OpenMMlab导出mobilenet-v2的onnx模型并推理

2023-11-06 08:12

本文主要是介绍OpenMMlab导出mobilenet-v2的onnx模型并推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用mmpretrain导出mobilenet-v2的onnx模型:

import torch
import numpy as np
from mmpretrain import get_modelmodel = get_model('mobilenet-v2_8xb32_in1k',pretrained='mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth', device='cpu') 
input = torch.zeros(1, 3, 224, 224)
out = model(input)
print(torch.argmax(out, dim=1))
torch.onnx.export(model, input, "mobilenet-v2.onnx", opset_version=11)

或者安装有mmdeploy的话可以通过如下方法导出:

from mmdeploy.apis import torch2onnx
from mmdeploy.backend.sdk.export_info import export2SDKimg = 'demo.JPEG'
work_dir = './work_dir/onnx/mobilenet_v2'
save_file = './end2end.onnx'
deploy_cfg = 'mmdeploy/configs/mmpretrain/classification_onnxruntime_static.py'
model_cfg = 'mmpretrain/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py'
model_checkpoint = './checkpoints/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth'
device = 'cpu'# 1. convert model to onnx
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg, model_checkpoint, device)# 2. extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)

通过onnxruntime进行推理:

import cv2
import numpy as np
import onnxruntimeimg = cv2.imread('goldfish.jpg')
img = cv2.resize(img, (224,224))
img = img[:,:,::-1].transpose(2,0,1)  #BGR2RGB和HWC2CHW
img = img.astype(dtype=np.float32)
img[0,:] = (img[0,:] - 123.675) / 58.395   
img[1,:] = (img[1,:] - 116.28) / 57.12
img[2,:] = (img[2,:] - 103.53) / 57.375
img = np.expand_dims(img,axis=0)onnx_session = onnxruntime.InferenceSession("mobilenet-v2.onnx", providers=['CPUExecutionProvider'])input_name=[]
for node in onnx_session.get_inputs():input_name.append(node.name)output_name=[]
for node in onnx_session.get_outputs():output_name.append(node.name)input_feed={}
for name in input_name:input_feed[name] = imgpred = onnx_session.run(None, input_feed)
print(np.argmax(pred))

这篇关于OpenMMlab导出mobilenet-v2的onnx模型并推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/355477

相关文章

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

Java导入、导出excel用法步骤保姆级教程(附封装好的工具类)

《Java导入、导出excel用法步骤保姆级教程(附封装好的工具类)》:本文主要介绍Java导入、导出excel的相关资料,讲解了使用Java和ApachePOI库将数据导出为Excel文件,包括... 目录前言一、引入Apache POI依赖二、用法&步骤2.1 创建Excel的元素2.3 样式和字体2.

java导出pdf文件的详细实现方法

《java导出pdf文件的详细实现方法》:本文主要介绍java导出pdf文件的详细实现方法,包括制作模板、获取中文字体文件、实现后端服务以及前端发起请求并生成下载链接,需要的朋友可以参考下... 目录使用注意点包含内容1、制作pdf模板2、获取pdf导出中文需要的文件3、实现4、前端发起请求并生成下载链接使

SpringBoot实现导出复杂对象到Excel文件

《SpringBoot实现导出复杂对象到Excel文件》这篇文章主要为大家详细介绍了如何使用Hutool和EasyExcel两种方式来实现在SpringBoot项目中导出复杂对象到Excel文件,需要... 在Spring Boot项目中导出复杂对象到Excel文件,可以利用Hutool或EasyExcel

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应