GEE数据集——2019、2020、2021、2022和2023年全球固定宽带和移动(蜂窝)网络性能Shapefile 格式数据集

本文主要是介绍GEE数据集——2019、2020、2021、2022和2023年全球固定宽带和移动(蜂窝)网络性能Shapefile 格式数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全球固定宽带和移动(蜂窝)网络性能¶

全球固定宽带和移动(蜂窝)网络性能,分配给缩放级别 16 网络墨卡托图块(赤道处约 610.8 米 x 610.8 米)。数据以 Shapefile 格式和 Apache Parquet 格式提供,其几何形状以众所周知的文本 (WKT) 表示,投影在 EPSG:4326 中。下载速度、上传速度和延迟是通过适用于 Android 和 iOS 的 Ookla 应用程序的 Speedtest 收集的,并对每个图块进行平均。测量结果将被过滤为包含 GPS 质量定位精度的结果。前言 – 人工智能教程

数据集的可用年份:2019、2020、2021、2022和2023

引文¶
Speedtest® by Ookla® Global Fixed and Mobile Network Performance Maps.
Based on analysis by Ookla of Speedtest Intelligence® data for [DATA TIME PERIOD].
Provided by Ookla and accessed [DAY MONTH YEAR]. Ookla trademarks used under license
and reprinted with permission.

在此处查找 GitHub 项目和数据集: https: //github.com/teamookla/ookla-open-data您还可以从 AWS 开放数据注册表下载数据集: https: //registry.opendata.aws/speedtest-global-performance /

瓦片¶

Ookla平台每月进行数亿次速度测试。为了创建可管理的数据集,我们将原始数据聚合到图块中。数据图块的大小被定义为“缩放级别”(或“z”)的函数。当 z=0 时,一块图块的大小就是整个世界的大小。在 z=1 时,图块在垂直和水平方向上分成两半,形成覆盖地球的 4 个图块。随着缩放级别的增加,这种图块分割会持续下去,导致当我们放大给定区域时图块会呈指数级减小。根据这个定义,图块大小实际上是根据Web 墨卡托投影(EPSG:3857) 的地球宽度/高度的一部分。因此,图块大小根据纬度略有不同,但图块大小可以以米为单位进行估计。

出于这些图层的目的,使用缩放级别 16 (z=16) 进行平铺。这相当于赤道处大约 610.8 米 x 610.8 米的图块(18 角秒块)。每个瓷砖的几何形状在现场以WGS 84 (EPSG:4326)表示tile

平铺属性¶

每个图块包含以下相邻属性:

字段名称类型描述
平均d_kbps整数在磁贴中执行的所有测试的平均下载速度,以每秒千位表示。
平均ukbps整数在图块中执行的所有测试的平均上传速度,以每秒千位表示。
平均纬度毫秒数整数在图块中执行的所有测试的平均延迟(以毫秒为单位)
测试整数在图块中进行的测试数量。
设备整数在磁贴中贡献测试的唯一设备的数量。
四键文本代表图块的四键。
四键¶

四键可以充当图块的唯一标识符。这对于在空间上连接多个时期(季度)的数据、创建更粗略的空间聚合而不使用地理空间函数、空间索引、分区以及存储和导出切片几何形状的替代方案非常有用。

层数¶

两层作为单独的文件集分布:

  • performance_mobile_tiles- 包含从具有 GPS 质量位置和蜂窝连接类型(例如 4G LTE、5G NR)的移动设备进行的测试的图块。
  • performance_fixed_tiles- 包含从具有 GPS 质量位置和非蜂窝连接类型(例如 WiFi、以太网)的移动设备进行的测试的图块。
时间段和更新频率¶

图层是根据一个季度(三个月)的数据生成的,文件将每季度更新和添加一次。一个/year=2020/quarter=1/时期(即 2020 年第一季度)将包括 之前或之后生成的所有2020-01-01数据2020-04-01

数据会定期重新汇总,以遵守适用于某些司法管辖区的法律规定的数据主体访问请求 (DSAR),包括但不限于《通用数据保护条例》(GDPR)、《加州消费者隐私法》(CCPA) 和《Lei Geral》 de Proteção de Dados (LGPD)。因此,在不同时间访问的数据可能会导致测试总数、图块和生成的性能指标发生变化。

网络图块

地球引擎片段¶
var mobile_20210101 = ee.FeatureCollection("projects/sat-io/open-datasets/network/mobile_tiles/2022-01-01_performance_mobile_tiles");
var fixed_20210101 = ee.FeatureCollection("projects/sat-io/open-datasets/network/fixed_tiles/2022-01-01_performance_fixed_tiles");

示例代码:https://code.earthengine.google.com/? scriptPath=users/sat-io/awesome-gee-catalog-examples:global-utilities-assets-amenities/GLOBAL-FIXED-MOBILE-NETWORK-PERFORMANCE

不同季度的移动和固定图块的地球引擎文件按以下格式排列,因为季度是 3 个月间隔,将月份变量替换为 01,04,07,10(代表 3 个月间隔)

* ee.FeatureCollection("projects/sat-io/open-datasets/network/mobile_tiles/Year-month-01_performance_mobile_tiles")
* ee.FeatureCollection("projects/sat-io/open-datasets/network/fixed_tiles/Year-month-01_performance_mobile_tiles")
栅格数据集¶

作为处理该数据集的一部分,我进一步将这些数据集转换为 32 位浮点栅格,这些栅格以 610m 分辨率生成,并且 avg_d_kbps、avg_u_kbps、avg_lat_ms、devices、tests 等要素属性在这些图像的波段中转换。每个季度的开始和结束日期都会进一步添加到图像中,但矢量到光栅转换过程中不会保留四边形信息。结果是固定和移动数据集的两个图像集合。

网络栅格

地球引擎片段¶
var fixed = ee.ImageCollection("projects/sat-io/open-datasets/network/raster_tiles/performance_fixed_tiles"),vis_fixed = {"opacity":1,"bands":["avg_d_kbps"],"min":1007.8523559570312,"max":125438.453125,"palette":["b40a01","ff3608","ffc46c","fff8a7","cbff87","52ff58","3bff89","35ffda","1f4fff"]},mobile = ee.ImageCollection("projects/sat-io/open-datasets/network/raster_tiles/performance_mobile_tiles"),vis_mobile = {"opacity":1,"bands":["avg_d_kbps"],"min":829.6676025390625,"max":102469.4453125,"palette":["b40a01","ff3608","ffc46c","fff8a7","cbff87","52ff58","3bff89","35ffda","1f4fff"]};
var fixed_image = fixed.first()
var mobile_image = mobile.first()Map.centerObject(fixed_image,2)Map.addLayer(fixed_image,vis_fixed,'Average Fixed Download Speed in kbps');Map.addLayer(mobile_image,vis_mobile,'Average Mobile Download Speed in kbps')var Stranger_Things= 
[{"featureType": "all","elementType": "all","stylers": [{"invert_lightness": true},{"saturation": "-9"},{"lightness": "0"},{"visibility": "simplified"}]},{"featureType": "landscape.man_made","elementType": "all","stylers": [{"weight": "1.00"}]},{"featureType": "road.highway","elementType": "all","stylers": [{"weight": "0.49"}]},{"featureType": "road.highway","elementType": "labels","stylers": [{"visibility": "on"},{"weight": "0.01"},{"lightness": "-7"},{"saturation": "-35"}]},{"featureType": "road.highway","elementType": "labels.text","stylers": [{"visibility": "on"}]},{"featureType": "road.highway","elementType": "labels.text.stroke","stylers": [{"visibility": "off"}]},{"featureType": "road.highway","elementType": "labels.icon","stylers": [{"visibility": "on"}]}
]
Map.setOptions('Stranger_Things', {Stranger_Things: Stranger_Things})

示例代码:https://code.earthengine.google.com/? scriptPath=users/sat-io/awesome-gee-catalog-examples:global-utilities-assets-amenities/GLOBAL-FIXED-MOBILE-NETWORK-PERF-光栅

执照¶

这些数据集根据 Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) 提供

提供者:奥克拉

GEE 策展人:Samapriya Roy

关键词::分析、宽带、城市、市政、基础设施、互联网、网络流量、电信、瓦片

最后更新:2023-09-18

这篇关于GEE数据集——2019、2020、2021、2022和2023年全球固定宽带和移动(蜂窝)网络性能Shapefile 格式数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/354658

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了