GEE数据集——2019、2020、2021、2022和2023年全球固定宽带和移动(蜂窝)网络性能Shapefile 格式数据集

本文主要是介绍GEE数据集——2019、2020、2021、2022和2023年全球固定宽带和移动(蜂窝)网络性能Shapefile 格式数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全球固定宽带和移动(蜂窝)网络性能¶

全球固定宽带和移动(蜂窝)网络性能,分配给缩放级别 16 网络墨卡托图块(赤道处约 610.8 米 x 610.8 米)。数据以 Shapefile 格式和 Apache Parquet 格式提供,其几何形状以众所周知的文本 (WKT) 表示,投影在 EPSG:4326 中。下载速度、上传速度和延迟是通过适用于 Android 和 iOS 的 Ookla 应用程序的 Speedtest 收集的,并对每个图块进行平均。测量结果将被过滤为包含 GPS 质量定位精度的结果。前言 – 人工智能教程

数据集的可用年份:2019、2020、2021、2022和2023

引文¶
Speedtest® by Ookla® Global Fixed and Mobile Network Performance Maps.
Based on analysis by Ookla of Speedtest Intelligence® data for [DATA TIME PERIOD].
Provided by Ookla and accessed [DAY MONTH YEAR]. Ookla trademarks used under license
and reprinted with permission.

在此处查找 GitHub 项目和数据集: https: //github.com/teamookla/ookla-open-data您还可以从 AWS 开放数据注册表下载数据集: https: //registry.opendata.aws/speedtest-global-performance /

瓦片¶

Ookla平台每月进行数亿次速度测试。为了创建可管理的数据集,我们将原始数据聚合到图块中。数据图块的大小被定义为“缩放级别”(或“z”)的函数。当 z=0 时,一块图块的大小就是整个世界的大小。在 z=1 时,图块在垂直和水平方向上分成两半,形成覆盖地球的 4 个图块。随着缩放级别的增加,这种图块分割会持续下去,导致当我们放大给定区域时图块会呈指数级减小。根据这个定义,图块大小实际上是根据Web 墨卡托投影(EPSG:3857) 的地球宽度/高度的一部分。因此,图块大小根据纬度略有不同,但图块大小可以以米为单位进行估计。

出于这些图层的目的,使用缩放级别 16 (z=16) 进行平铺。这相当于赤道处大约 610.8 米 x 610.8 米的图块(18 角秒块)。每个瓷砖的几何形状在现场以WGS 84 (EPSG:4326)表示tile

平铺属性¶

每个图块包含以下相邻属性:

字段名称类型描述
平均d_kbps整数在磁贴中执行的所有测试的平均下载速度,以每秒千位表示。
平均ukbps整数在图块中执行的所有测试的平均上传速度,以每秒千位表示。
平均纬度毫秒数整数在图块中执行的所有测试的平均延迟(以毫秒为单位)
测试整数在图块中进行的测试数量。
设备整数在磁贴中贡献测试的唯一设备的数量。
四键文本代表图块的四键。
四键¶

四键可以充当图块的唯一标识符。这对于在空间上连接多个时期(季度)的数据、创建更粗略的空间聚合而不使用地理空间函数、空间索引、分区以及存储和导出切片几何形状的替代方案非常有用。

层数¶

两层作为单独的文件集分布:

  • performance_mobile_tiles- 包含从具有 GPS 质量位置和蜂窝连接类型(例如 4G LTE、5G NR)的移动设备进行的测试的图块。
  • performance_fixed_tiles- 包含从具有 GPS 质量位置和非蜂窝连接类型(例如 WiFi、以太网)的移动设备进行的测试的图块。
时间段和更新频率¶

图层是根据一个季度(三个月)的数据生成的,文件将每季度更新和添加一次。一个/year=2020/quarter=1/时期(即 2020 年第一季度)将包括 之前或之后生成的所有2020-01-01数据2020-04-01

数据会定期重新汇总,以遵守适用于某些司法管辖区的法律规定的数据主体访问请求 (DSAR),包括但不限于《通用数据保护条例》(GDPR)、《加州消费者隐私法》(CCPA) 和《Lei Geral》 de Proteção de Dados (LGPD)。因此,在不同时间访问的数据可能会导致测试总数、图块和生成的性能指标发生变化。

网络图块

地球引擎片段¶
var mobile_20210101 = ee.FeatureCollection("projects/sat-io/open-datasets/network/mobile_tiles/2022-01-01_performance_mobile_tiles");
var fixed_20210101 = ee.FeatureCollection("projects/sat-io/open-datasets/network/fixed_tiles/2022-01-01_performance_fixed_tiles");

示例代码:https://code.earthengine.google.com/? scriptPath=users/sat-io/awesome-gee-catalog-examples:global-utilities-assets-amenities/GLOBAL-FIXED-MOBILE-NETWORK-PERFORMANCE

不同季度的移动和固定图块的地球引擎文件按以下格式排列,因为季度是 3 个月间隔,将月份变量替换为 01,04,07,10(代表 3 个月间隔)

* ee.FeatureCollection("projects/sat-io/open-datasets/network/mobile_tiles/Year-month-01_performance_mobile_tiles")
* ee.FeatureCollection("projects/sat-io/open-datasets/network/fixed_tiles/Year-month-01_performance_mobile_tiles")
栅格数据集¶

作为处理该数据集的一部分,我进一步将这些数据集转换为 32 位浮点栅格,这些栅格以 610m 分辨率生成,并且 avg_d_kbps、avg_u_kbps、avg_lat_ms、devices、tests 等要素属性在这些图像的波段中转换。每个季度的开始和结束日期都会进一步添加到图像中,但矢量到光栅转换过程中不会保留四边形信息。结果是固定和移动数据集的两个图像集合。

网络栅格

地球引擎片段¶
var fixed = ee.ImageCollection("projects/sat-io/open-datasets/network/raster_tiles/performance_fixed_tiles"),vis_fixed = {"opacity":1,"bands":["avg_d_kbps"],"min":1007.8523559570312,"max":125438.453125,"palette":["b40a01","ff3608","ffc46c","fff8a7","cbff87","52ff58","3bff89","35ffda","1f4fff"]},mobile = ee.ImageCollection("projects/sat-io/open-datasets/network/raster_tiles/performance_mobile_tiles"),vis_mobile = {"opacity":1,"bands":["avg_d_kbps"],"min":829.6676025390625,"max":102469.4453125,"palette":["b40a01","ff3608","ffc46c","fff8a7","cbff87","52ff58","3bff89","35ffda","1f4fff"]};
var fixed_image = fixed.first()
var mobile_image = mobile.first()Map.centerObject(fixed_image,2)Map.addLayer(fixed_image,vis_fixed,'Average Fixed Download Speed in kbps');Map.addLayer(mobile_image,vis_mobile,'Average Mobile Download Speed in kbps')var Stranger_Things= 
[{"featureType": "all","elementType": "all","stylers": [{"invert_lightness": true},{"saturation": "-9"},{"lightness": "0"},{"visibility": "simplified"}]},{"featureType": "landscape.man_made","elementType": "all","stylers": [{"weight": "1.00"}]},{"featureType": "road.highway","elementType": "all","stylers": [{"weight": "0.49"}]},{"featureType": "road.highway","elementType": "labels","stylers": [{"visibility": "on"},{"weight": "0.01"},{"lightness": "-7"},{"saturation": "-35"}]},{"featureType": "road.highway","elementType": "labels.text","stylers": [{"visibility": "on"}]},{"featureType": "road.highway","elementType": "labels.text.stroke","stylers": [{"visibility": "off"}]},{"featureType": "road.highway","elementType": "labels.icon","stylers": [{"visibility": "on"}]}
]
Map.setOptions('Stranger_Things', {Stranger_Things: Stranger_Things})

示例代码:https://code.earthengine.google.com/? scriptPath=users/sat-io/awesome-gee-catalog-examples:global-utilities-assets-amenities/GLOBAL-FIXED-MOBILE-NETWORK-PERF-光栅

执照¶

这些数据集根据 Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) 提供

提供者:奥克拉

GEE 策展人:Samapriya Roy

关键词::分析、宽带、城市、市政、基础设施、互联网、网络流量、电信、瓦片

最后更新:2023-09-18

这篇关于GEE数据集——2019、2020、2021、2022和2023年全球固定宽带和移动(蜂窝)网络性能Shapefile 格式数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/354658

相关文章

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,