数据可视化!全面了解象形柱形图!

2023-11-06 04:20

本文主要是介绍数据可视化!全面了解象形柱形图!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

 一.普通图像画制象形柱形图

1.象形柱形图是什么?它有什么适用场景?

2.柱形象形图有什么优劣势?

3.导入库

4.最终具体代码

5.图形效果

  二.通过json文件显示图标

1.什么是json文件?

2.导入库

 3.最终代码

 三.总结


前言

        象形柱图它利用SVG图片和形状来表现数据,能够让数据展现更加贴近数据故事背景,视觉表达更为丰富生动。你可以通过新增的内置多种图案快速实现数据形态的修饰,同时结合图案的个性化设置效果搭配来改变数据的展现效果今天让我们来学习一下象形柱形图,加深对它的了解吧。

 一.普通图像画制象形柱形图

1.象形柱形图是什么?它有什么适用场景?

象形柱图(Pictorial Bar)是属于柱形图的一种,用象形图的方式来展示,象形图是通过其与物理对象的图画相似来表达其意义的表意文字。象形柱图的整体适用范围和柱形图一致,象形柱图比起实际的应用,更多的是符合人们不同审美的需求,用更形象的图案去展示数据。

象形柱图和柱形图的使用方法一致,主要用于多个分类间的数据(大小、数值)的对比,可以用来显示一段时间内的数据变化或显示各项之间的比较情况,柱形图简单直观,易于比较各组数据之间的差别。

2.柱形象形图有什么优劣势?


优势:相较于普通柱形图,象形柱图更加美观,在表现数据的同时也能通过图形表达数据之外的含义。
缺点:象形柱图不适合用于表达趋势的数据,这种数据更适合用折线图或者面积图;也不适合用于表达占比的数据,这种数据更适合用于饼图。

3.导入库

代码如下(示例):

from pyecharts import options as opts
from pyecharts.charts import PictorialBar

注意:

        如果还没有pyecharts库的话,我们windows中搜索anaconda prompt打开,运行下述代码:

pip install pyecharts

        或使用清华镜像下载(建议使用这个):

 pip install pyecharts -i https://pypi.tuna.tsinghua.edu.cn/simple

4.最终具体代码

from pyecharts import options as opts
from pyecharts.charts import PictorialBarc = (PictorialBar().add_xaxis(["reindeer", "ship", "plane", "train", "car"]).add_yaxis("",[{'value':1,'symbol':'image://小猪佩奇.jpg'},{'value':2,'symbol':'image://小猪佩奇2.jpg'},{'value':3,'symbol':'image://小猪佩奇3.jpg'},{'value':4,'symbol':'image://小猪佩奇4.jpg'},{'value':5,'symbol':'image://小猪佩奇5.jpg'},],label_opts=opts.LabelOpts(is_show=False), # 不显示数据标签symbol_size=50, # 图形大小symbol_repeat="fixed",# 是否用重复图形表示柱形symbol_offset=[0, 0], # 图形的偏移is_symbol_clip=True, # 是否剪切图形).reversal_axis().set_global_opts(title_opts=opts.TitleOpts(title="PictorialBar-Vehicles in X City"),xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(axistick_opts=opts.AxisTickOpts(is_show=False),axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(opacity=0)),),)
)
c.render_notebook()

使用.add_xaxis([ ])画制图形的x轴参数,

使用.add_yaxis([  ])画制图形的y轴参数,因为这里我们使用图形,因此没有定义。

传入自己想要的图片来勇于表示柱形,在这里,我使用的是小猪佩奇的图片

使用render_notebook进行渲染

在这里要注意传入的图片图形,需要与我们的代码文件处于同一位置!大家还可以通过其他的配置样式,来修改我们的图形参数。

基本语法可以参考以下网站:

https://gallery.pyecharts.org/#/PictorialBar/pictorialbar_multi_custom_symbols

5.图形效果

 二.通过json文件显示图标

1.什么是json文件?

“.json”是用来存储简单的数据接口和对象的文件;json是一种轻量级的数据交换格式,基于ECMAScript的一个子集,采用完全独立于编程语言的文本格式来存储和表示数据,用于许多web应用程序来进行数据交换。

2.导入库

代码如下(示例):

import jsonfrom pyecharts import options as opts
from pyecharts.charts import PictorialBarwith open("symbol.json", "r", encoding="utf-8") as f:symbols = json.load(f)

在这里,我们需要提前导入写好的json文件,里面包涵每个图标的path部分。

创建symbols.json文件,内容包涵:

{"reindeer": "path://M-22.788,24.521c2.08-0.986,3.611-3.905,4.984-5.892 c-2.686,2.782-5.047,5.884-9.102,7.312c-0.992,0.005-0.25-2.016,0.34-2.362l1.852-0.41c0.564-0.218,0.785-0.842,0.902-1.347 c2.133-0.727,4.91-4.129,6.031-6.194c1.748-0.7,4.443-0.679,5.734-2.293c1.176-1.468,0.393-3.992,1.215-6.557 c0.24-0.754,0.574-1.581,1.008-2.293c-0.611,0.011-1.348-0.061-1.959-0.608c-1.391-1.245-0.785-2.086-1.297-3.313 c1.684,0.744,2.5,2.584,4.426,2.586C-8.46,3.012-8.255,2.901-8.04,2.824c6.031-1.952,15.182-0.165,19.498-3.937 c1.15-3.933-1.24-9.846-1.229-9.938c0.008-0.062-1.314-0.004-1.803-0.258c-1.119-0.771-6.531-3.75-0.17-3.33 c0.314-0.045,0.943,0.259,1.439,0.435c-0.289-1.694-0.92-0.144-3.311-1.946c0,0-1.1-0.855-1.764-1.98 c-0.836-1.09-2.01-2.825-2.992-4.031c-1.523-2.476,1.367,0.709,1.816,1.108c1.768,1.704,1.844,3.281,3.232,3.983 c0.195,0.203,1.453,0.164,0.926-0.468c-0.525-0.632-1.367-1.278-1.775-2.341c-0.293-0.703-1.311-2.326-1.566-2.711 c-0.256-0.384-0.959-1.718-1.67-2.351c-1.047-1.187-0.268-0.902,0.521-0.07c0.789,0.834,1.537,1.821,1.672,2.023 c0.135,0.203,1.584,2.521,1.725,2.387c0.102-0.259-0.035-0.428-0.158-0.852c-0.125-0.423-0.912-2.032-0.961-2.083 c-0.357-0.852-0.566-1.908-0.598-3.333c0.4-2.375,0.648-2.486,0.549-0.705c0.014,1.143,0.031,2.215,0.602,3.247 c0.807,1.496,1.764,4.064,1.836,4.474c0.561,3.176,2.904,1.749,2.281-0.126c-0.068-0.446-0.109-2.014-0.287-2.862 c-0.18-0.849-0.219-1.688-0.113-3.056c0.066-1.389,0.232-2.055,0.277-2.299c0.285-1.023,0.4-1.088,0.408,0.135 c-0.059,0.399-0.131,1.687-0.125,2.655c0.064,0.642-0.043,1.768,0.172,2.486c0.654,1.928-0.027,3.496,1,3.514 c1.805-0.424,2.428-1.218,2.428-2.346c-0.086-0.704-0.121-0.843-0.031-1.193c0.221-0.568,0.359-0.67,0.312-0.076 c-0.055,0.287,0.031,0.533,0.082,0.794c0.264,1.197,0.912,0.114,1.283-0.782c0.15-0.238,0.539-2.154,0.545-2.522 c-0.023-0.617,0.285-0.645,0.309,0.01c0.064,0.422-0.248,2.646-0.205,2.334c-0.338,1.24-1.105,3.402-3.379,4.712 c-0.389,0.12-1.186,1.286-3.328,2.178c0,0,1.729,0.321,3.156,0.246c1.102-0.19,3.707-0.027,4.654,0.269 c1.752,0.494,1.531-0.053,4.084,0.164c2.26-0.4,2.154,2.391-1.496,3.68c-2.549,1.405-3.107,1.475-2.293,2.984 c3.484,7.906,2.865,13.183,2.193,16.466c2.41,0.271,5.732-0.62,7.301,0.725c0.506,0.333,0.648,1.866-0.457,2.86 c-4.105,2.745-9.283,7.022-13.904,7.662c-0.977-0.194,0.156-2.025,0.803-2.247l1.898-0.03c0.596-0.101,0.936-0.669,1.152-1.139 c3.16-0.404,5.045-3.775,8.246-4.818c-4.035-0.718-9.588,3.981-12.162,1.051c-5.043,1.423-11.449,1.84-15.895,1.111 c-3.105,2.687-7.934,4.021-12.115,5.866c-3.271,3.511-5.188,8.086-9.967,10.414c-0.986,0.119-0.48-1.974,0.066-2.385l1.795-0.618 C-22.995,25.682-22.849,25.035-22.788,24.521z","plane": "path://M1.112,32.559l2.998,1.205l-2.882,2.268l-2.215-0.012L1.112,32.559z M37.803,23.96 c0.158-0.838,0.5-1.509,0.961-1.904c-0.096-0.037-0.205-0.071-0.344-0.071c-0.777-0.005-2.068-0.009-3.047-0.009 c-0.633,0-1.217,0.066-1.754,0.18l2.199,1.804H37.803z M39.738,23.036c-0.111,0-0.377,0.325-0.537,0.924h1.076 C40.115,23.361,39.854,23.036,39.738,23.036z M39.934,39.867c-0.166,0-0.674,0.705-0.674,1.986s0.506,1.986,0.674,1.986 s0.672-0.705,0.672-1.986S40.102,39.867,39.934,39.867z M38.963,38.889c-0.098-0.038-0.209-0.07-0.348-0.073 c-0.082,0-0.174,0-0.268-0.001l-7.127,4.671c0.879,0.821,2.42,1.417,4.348,1.417c0.979,0,2.27-0.006,3.047-0.01 c0.139,0,0.25-0.034,0.348-0.072c-0.646-0.555-1.07-1.643-1.07-2.967C37.891,40.529,38.316,39.441,38.963,38.889z M32.713,23.96 l-12.37-10.116l-4.693-0.004c0,0,4,8.222,4.827,10.121H32.713z M59.311,32.374c-0.248,2.104-5.305,3.172-8.018,3.172H39.629 l-25.325,16.61L9.607,52.16c0,0,6.687-8.479,7.95-10.207c1.17-1.6,3.019-3.699,3.027-6.407h-2.138 c-5.839,0-13.816-3.789-18.472-5.583c-2.818-1.085-2.396-4.04-0.031-4.04h0.039l-3.299-11.371h3.617c0,0,4.352,5.696,5.846,7.5 c2,2.416,4.503,3.678,8.228,3.87h30.727c2.17,0,4.311,0.417,6.252,1.046c3.49,1.175,5.863,2.7,7.199,4.027 C59.145,31.584,59.352,32.025,59.311,32.374z M22.069,30.408c0-0.815-0.661-1.475-1.469-1.475c-0.812,0-1.471,0.66-1.471,1.475 s0.658,1.475,1.471,1.475C21.408,31.883,22.069,31.224,22.069,30.408z M27.06,30.408c0-0.815-0.656-1.478-1.466-1.478 c-0.812,0-1.471,0.662-1.471,1.478s0.658,1.477,1.471,1.477C26.404,31.885,27.06,31.224,27.06,30.408z M32.055,30.408 c0-0.815-0.66-1.475-1.469-1.475c-0.808,0-1.466,0.66-1.466,1.475s0.658,1.475,1.466,1.475 C31.398,31.883,32.055,31.224,32.055,30.408z M37.049,30.408c0-0.815-0.658-1.478-1.467-1.478c-0.812,0-1.469,0.662-1.469,1.478 s0.656,1.477,1.469,1.477C36.389,31.885,37.049,31.224,37.049,30.408z M42.039,30.408c0-0.815-0.656-1.478-1.465-1.478 c-0.811,0-1.469,0.662-1.469,1.478s0.658,1.477,1.469,1.477C41.383,31.885,42.039,31.224,42.039,30.408z M55.479,30.565 c-0.701-0.436-1.568-0.896-2.627-1.347c-0.613,0.289-1.551,0.476-2.73,0.476c-1.527,0-1.639,2.263,0.164,2.316 C52.389,32.074,54.627,31.373,55.479,30.565z","train": "path://M67.335,33.596L67.335,33.596c-0.002-1.39-1.153-3.183-3.328-4.218h-9.096v-2.07h5.371 c-4.939-2.07-11.199-4.141-14.89-4.141H19.72v12.421v5.176h38.373c4.033,0,8.457-1.035,9.142-5.176h-0.027 c0.076-0.367,0.129-0.751,0.129-1.165L67.335,33.596L67.335,33.596z M27.999,30.413h-3.105v-4.141h3.105V30.413z M35.245,30.413 h-3.104v-4.141h3.104V30.413z M42.491,30.413h-3.104v-4.141h3.104V30.413z M49.736,30.413h-3.104v-4.141h3.104V30.413z  M14.544,40.764c1.143,0,2.07-0.927,2.07-2.07V35.59V25.237c0-1.145-0.928-2.07-2.07-2.07H-9.265c-1.143,0-2.068,0.926-2.068,2.07 v10.351v3.105c0,1.144,0.926,2.07,2.068,2.07H14.544L14.544,40.764z M8.333,26.272h3.105v4.141H8.333V26.272z M1.087,26.272h3.105 v4.141H1.087V26.272z M-6.159,26.272h3.105v4.141h-3.105V26.272z M-9.265,41.798h69.352v1.035H-9.265V41.798z","ship": "path://M16.678,17.086h9.854l-2.703,5.912c5.596,2.428,11.155,5.575,16.711,8.607c3.387,1.847,6.967,3.75,10.541,5.375 v-6.16l-4.197-2.763v-5.318L33.064,12.197h-11.48L20.43,15.24h-4.533l-1.266,3.286l0.781,0.345L16.678,17.086z M49.6,31.84 l0.047,1.273L27.438,20.998l0.799-1.734L49.6,31.84z M33.031,15.1l12.889,8.82l0.027,0.769L32.551,16.1L33.031,15.1z M22.377,14.045 h9.846l-1.539,3.365l-2.287-1.498h1.371l0.721-1.352h-2.023l-0.553,1.037l-0.541-0.357h-0.34l0.359-0.684h-2.025l-0.361,0.684 h-3.473L22.377,14.045z M23.695,20.678l-0.004,0.004h0.004V20.678z M24.828,18.199h-2.031l-0.719,1.358h2.029L24.828,18.199z  M40.385,34.227c-12.85-7.009-25.729-14.667-38.971-12.527c1.26,8.809,9.08,16.201,8.213,24.328 c-0.553,4.062-3.111,0.828-3.303,7.137c15.799,0,32.379,0,48.166,0l0.066-4.195l1.477-7.23 C50.842,39.812,45.393,36.961,40.385,34.227z M13.99,35.954c-1.213,0-2.195-1.353-2.195-3.035c0-1.665,0.98-3.017,2.195-3.017 c1.219,0,2.195,1.352,2.195,3.017C16.186,34.604,15.213,35.954,13.99,35.954z M23.691,20.682h-2.02l-0.588,1.351h2.023 L23.691,20.682z M19.697,18.199l-0.721,1.358h2.025l0.727-1.358H19.697z","car": "path://M49.592,40.883c-0.053,0.354-0.139,0.697-0.268,0.963c-0.232,0.475-0.455,0.519-1.334,0.475 c-1.135-0.053-2.764,0-4.484,0.068c0,0.476,0.018,0.697,0.018,0.697c0.111,1.299,0.697,1.342,0.931,1.342h3.7 c0.326,0,0.628,0,0.861-0.154c0.301-0.196,0.43-0.772,0.543-1.78c0.017-0.146,0.025-0.336,0.033-0.56v-0.01 c0-0.068,0.008-0.154,0.008-0.25V41.58l0,0C49.6,41.348,49.6,41.09,49.592,40.883L49.592,40.883z M6.057,40.883 c0.053,0.354,0.137,0.697,0.268,0.963c0.23,0.475,0.455,0.519,1.334,0.475c1.137-0.053,2.762,0,4.484,0.068 c0,0.476-0.018,0.697-0.018,0.697c-0.111,1.299-0.697,1.342-0.93,1.342h-3.7c-0.328,0-0.602,0-0.861-0.154 c-0.309-0.18-0.43-0.772-0.541-1.78c-0.018-0.146-0.027-0.336-0.035-0.56v-0.01c0-0.068-0.008-0.154-0.008-0.25V41.58l0,0 C6.057,41.348,6.057,41.09,6.057,40.883L6.057,40.883z M49.867,32.766c0-2.642-0.344-5.224-0.482-5.507 c-0.104-0.207-0.766-0.749-2.271-1.773c-1.522-1.042-1.487-0.887-1.766-1.566c0.25-0.078,0.492-0.224,0.639-0.241 c0.326-0.034,0.345,0.274,1.023,0.274c0.68,0,2.152-0.18,2.453-0.48c0.301-0.303,0.396-0.405,0.396-0.672 c0-0.268-0.156-0.818-0.447-1.146c-0.293-0.327-1.541-0.49-2.273-0.585c-0.729-0.095-0.834,0-1.022,0.121 c-0.304,0.189-0.32,1.919-0.32,1.919l-0.713,0.018c-0.465-1.146-1.11-3.452-2.117-5.269c-1.103-1.979-2.256-2.599-2.737-2.754 c-0.474-0.146-0.904-0.249-4.131-0.576c-3.298-0.344-5.922-0.388-8.262-0.388c-2.342,0-4.967,0.052-8.264,0.388 c-3.229,0.336-3.66,0.43-4.133,0.576s-1.633,0.775-2.736,2.754c-1.006,1.816-1.652,4.123-2.117,5.269L9.87,23.109 c0,0-0.008-1.729-0.318-1.919c-0.189-0.121-0.293-0.225-1.023-0.121c-0.732,0.104-1.98,0.258-2.273,0.585 c-0.293,0.327-0.447,0.878-0.447,1.146c0,0.267,0.094,0.379,0.396,0.672c0.301,0.301,1.773,0.48,2.453,0.48 c0.68,0,0.697-0.309,1.023-0.274c0.146,0.018,0.396,0.163,0.637,0.241c-0.283,0.68-0.24,0.524-1.764,1.566 c-1.506,1.033-2.178,1.566-2.271,1.773c-0.139,0.283-0.482,2.865-0.482,5.508s0.189,5.02,0.189,5.86c0,0.354,0,0.976,0.076,1.565 c0.053,0.354,0.129,0.697,0.268,0.966c0.232,0.473,0.447,0.516,1.334,0.473c1.137-0.051,2.779,0,4.477,0.07 c1.135,0.043,2.297,0.086,3.33,0.11c2.582,0.051,1.826-0.379,2.928-0.36c1.102,0.016,5.447,0.196,9.424,0.196 c3.976,0,8.332-0.182,9.423-0.196c1.102-0.019,0.346,0.411,2.926,0.36c1.033-0.018,2.195-0.067,3.332-0.11 c1.695-0.062,3.348-0.121,4.477-0.07c0.886,0.043,1.103,0,1.332-0.473c0.132-0.269,0.218-0.611,0.269-0.966 c0.086-0.592,0.078-1.213,0.078-1.565C49.678,37.793,49.867,35.408,49.867,32.766L49.867,32.766z M13.219,19.735 c0.412-0.964,1.652-2.9,2.256-3.244c0.145-0.087,1.426-0.491,4.637-0.706c2.953-0.198,6.217-0.276,7.73-0.276 c1.513,0,4.777,0.078,7.729,0.276c3.201,0.215,4.502,0.611,4.639,0.706c0.775,0.533,1.842,2.28,2.256,3.244 c0.412,0.965,0.965,2.858,0.861,3.116c-0.104,0.258,0.104,0.388-1.291,0.275c-1.387-0.103-10.088-0.216-14.185-0.216 c-4.088,0-12.789,0.113-14.184,0.216c-1.395,0.104-1.188-0.018-1.291-0.275C12.254,22.593,12.805,20.708,13.219,19.735 L13.219,19.735z M16.385,30.511c-0.619,0.155-0.988,0.491-1.764,0.482c-0.775,0-2.867-0.353-3.314-0.371 c-0.447-0.017-0.842,0.302-1.076,0.362c-0.23,0.06-0.688-0.104-1.377-0.318c-0.688-0.216-1.092-0.155-1.316-1.094 c-0.232-0.93,0-2.264,0-2.264c1.488-0.068,2.928,0.069,5.621,0.826c2.693,0.758,4.191,2.213,4.191,2.213 S17.004,30.357,16.385,30.511L16.385,30.511z M36.629,37.293c-1.23,0.164-6.386,0.207-8.794,0.207c-2.412,0-7.566-0.051-8.799-0.207 c-1.256-0.164-2.891-1.67-1.764-2.865c1.523-1.627,1.24-1.576,4.701-2.023C24.967,32.018,27.239,32,27.834,32 c0.584,0,2.865,0.025,5.859,0.404c3.461,0.447,3.178,0.396,4.699,2.022C39.521,35.623,37.887,37.129,36.629,37.293L36.629,37.293z  M48.129,29.582c-0.232,0.93-0.629,0.878-1.318,1.093c-0.688,0.216-1.145,0.371-1.377,0.319c-0.231-0.053-0.627-0.371-1.074-0.361 c-0.448,0.018-2.539,0.37-3.313,0.37c-0.772,0-1.146-0.328-1.764-0.481c-0.621-0.154-0.966-0.154-0.966-0.154 s1.49-1.464,4.191-2.213c2.693-0.758,4.131-0.895,5.621-0.826C48.129,27.309,48.361,28.643,48.129,29.582L48.129,29.582z"
}

更多图标的svg代码可以从阿里巴巴矢量图标库中下载:

https://www.iconfont.cn/collections/index?spm=a313x.7781069.1998910419.d33146d14&type=3

我们只需要复制每个图标的path部分代码。

在这里我选择用蛋糕图标替换其中一个图形,我们要先复制它的SVG代码,选取它的path部分赋予一个新值代替。操作如下:

SVG代码部分如下:

<svg t="1678792213702" class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="1122" width="200" height="200"><path d="M708.2496 170.6496a25.6 25.6 0 1 0-51.2 0v42.7008a25.6 25.6 0 0 0 51.2 0v-42.7008z m-25.6 123.7504a25.6 25.6 0 0 1 25.6 25.6V486.4h145.1008a25.6 25.6 0 0 1 25.6 25.6v315.7504h59.6992a25.6 25.6 0 1 1 0 51.2H85.3504a25.6 25.6 0 0 1 0-51.2h59.6992v-101.888a26.112 26.112 0 0 1 0-1.024V512a25.6 25.6 0 0 1 25.6-25.6h145.1008V320a25.6 25.6 0 0 1 51.2 0V486.4H486.4V320a25.6 25.6 0 0 1 51.2 0V486.4h119.4496V320a25.6 25.6 0 0 1 25.6-25.6z m145.1008 533.3504v-86.5792L768 711.2704l-73.8816 36.9664a25.6 25.6 0 0 1-22.8864 0l-73.8816-36.9664-73.8816 36.9664a25.6 25.6 0 0 1-22.9376 0l-73.8816-36.9664-73.8816 36.9664a25.6 25.6 0 0 1-22.8864 0L256 711.2704l-59.7504 29.9008v86.528h631.5008z m0-143.872V537.6H196.2496v146.3296l48.2816-24.1664a25.6 25.6 0 0 1 22.9376 0l73.8816 36.9664 73.8816-36.9664a25.6 25.6 0 0 1 22.8864 0l73.8816 36.9664 73.8816-36.9664a25.6 25.6 0 0 1 22.8864 0l73.8816 36.9664 73.8816-36.9664a25.6 25.6 0 0 1 22.9376 0l48.2816 24.1664zM512 145.1008a25.6 25.6 0 0 1 25.6 25.6v42.7008a25.6 25.6 0 0 1-51.2 0v-42.7008a25.6 25.6 0 0 1 25.6-25.6z m-145.0496 25.6a25.6 25.6 0 0 0-51.2 0v42.7008a25.6 25.6 0 0 0 51.2 0v-42.7008z" fill="#4A4A4A" p-id="1123"></path></svg>

其中我们只选取选取path部分,在这里要注意不要选取颜色部分代码。

symbols['蛋糕']='path://M708.2496 170.6496a25.6 25.6 0 1 0-51.2 0v42.7008a25.6 25.6 0 0 0 51.2 0v-42.7008z m-25.6 123.7504a25.6 25.6 0 0 1 25.6 25.6V486.4h145.1008a25.6 25.6 0 0 1 25.6 25.6v315.7504h59.6992a25.6 25.6 0 1 1 0 51.2H85.3504a25.6 25.6 0 0 1 0-51.2h59.6992v-101.888a26.112 26.112 0 0 1 0-1.024V512a25.6 25.6 0 0 1 25.6-25.6h145.1008V320a25.6 25.6 0 0 1 51.2 0V486.4H486.4V320a25.6 25.6 0 0 1 51.2 0V486.4h119.4496V320a25.6 25.6 0 0 1 25.6-25.6z m145.1008 533.3504v-86.5792L768 711.2704l-73.8816 36.9664a25.6 25.6 0 0 1-22.8864 0l-73.8816-36.9664-73.8816 36.9664a25.6 25.6 0 0 1-22.9376 0l-73.8816-36.9664-73.8816 36.9664a25.6 25.6 0 0 1-22.8864 0L256 711.2704l-59.7504 29.9008v86.528h631.5008z m0-143.872V537.6H196.2496v146.3296l48.2816-24.1664a25.6 25.6 0 0 1 22.9376 0l73.8816 36.9664 73.8816-36.9664a25.6 25.6 0 0 1 22.8864 0l73.8816 36.9664 73.8816-36.9664a25.6 25.6 0 0 1 22.8864 0l73.8816 36.9664 73.8816-36.9664a25.6 25.6 0 0 1 22.9376 0l48.2816 24.1664zM512 145.1008a25.6 25.6 0 0 1 25.6 25.6v42.7008a25.6 25.6 0 0 1-51.2 0v-42.7008a25.6 25.6 0 0 1 25.6-25.6z m-145.0496 25.6a25.6 25.6 0 0 0-51.2 0v42.7008a25.6 25.6 0 0 0 51.2 0v-42.7008z"'

 3.最终代码

import jsonfrom pyecharts import options as opts
from pyecharts.charts import PictorialBarwith open("symbol.json", "r", encoding="utf-8") as f:symbols = json.load(f)c = (PictorialBar().add_xaxis(["reindeer", "ship", "plane", "train", "car"]).add_yaxis("2015",[{"value": 157, "symbol":symbols["蛋糕"]},{"value": 21, "symbol": symbols["ship"]},{"value": 66, "symbol": symbols["plane"]},{"value": 78, "symbol": symbols["train"]},{"value": 123, "symbol": symbols["car"]},],label_opts=opts.LabelOpts(is_show=False),symbol_size=22,symbol_repeat="fixed",symbol_offset=[0, 5],is_symbol_clip=True,).add_yaxis("2016",[{"value": 184, "symbol": symbols["蛋糕"]},{"value": 29, "symbol": symbols["ship"]},{"value": 73, "symbol": symbols["plane"]},{"value": 91, "symbol": symbols["train"]},{"value": 95, "symbol": symbols["car"]},],label_opts=opts.LabelOpts(is_show=False),symbol_size=22,symbol_repeat="fixed",symbol_offset=[0, -25],is_symbol_clip=True,).reversal_axis().set_global_opts(title_opts=opts.TitleOpts(title="PictorialBar-Vehicles in X City"),xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(axistick_opts=opts.AxisTickOpts(is_show=False),axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(opacity=0)),),)
#     .render("pictorialbar_multi_custom_symbols.html")
)
c.render_notebook()

使用render_notebook进行渲染

运行结果图如下:

 三.总结

综合以上内容,我们更加了解了pyecharts中象形柱形图的使用方法,同时提供丰富的数据报表模板,快速搭建,大大提升工作效率。希望今天的内容对大家有所帮助!

这篇关于数据可视化!全面了解象形柱形图!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/354443

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者