SLAM从入门到精通(被忽视的基础图像处理)

2023-11-06 03:30

本文主要是介绍SLAM从入门到精通(被忽视的基础图像处理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】

        工业上用激光slam的多,用视觉slam的少,这是大家都知道的常识。毕竟对于工业来说,健壮和稳定是我们必须要考虑的事情。但是图像slam在这过程当中其实也可以扮演十分重要的角色,比如说地面如果非常有特征的话,黄色路面或者绿色路面。这个时候,即使全局的slam完成不了,那么也可以实现局部道路的slam导航。

        ros里面其实也谈到了opencv,它是一个用的比较多的开发库。但是很多时候,上面的demo都是比较割裂的,很难说这是用于实际场景的代码。比如说,平时比较常用的二维码导航,上面就谈的不是很多。所以,对于这些知识点,我们都可以自己编写opencv程序来解决。

        目前在ubuntu20.04上面,ros noetic版本自带的是opencv 4版本了,这个需要注意下了。另外,实际图像开发的时候,光源很重要。如果光源不满足条件,可以自己编写代码,比如利用最大灰度值做pwm的pid反馈参考量,这都是有实际意义的。

1、编写测试代码

        这段代码来自于网上。主要还是为了说明opencv如何编写代码,有兴趣的同学可以去买一本opencv的书来进行学习和研究。

#include <opencv4/opencv2/highgui/highgui.hpp>
#include <opencv4/opencv2/imgcodecs/legacy/constants_c.h>
#include <iostream>
using namespace std;int main( int argc, char** argv ) {cv::Mat image;image = cv::imread("test.jpg" , CV_LOAD_IMAGE_COLOR);	      if(! image.data ) {std::cout <<  "Could not open or find the image" << std::endl ;return -1;}std::cout << "image wide: "<< image.cols << ",image high: " << image.rows << ",image channels: "<< image.channels() << std::endl;/* display imagecv::namedWindow( "Display window", cv::WINDOW_AUTOSIZE );cv::imshow( "Display window", image );		    cv::waitKey(0);*/size_t y,x;// y is row, x is colint c;     // c is channely = x = 250;c = 2;// row_ptr is the head point of y rowunsigned char *row_ptr = image.ptr<unsigned char>(y);// data_ptr points to pixel dataunsigned char *data_ptr = &row_ptr[x * image.channels()]; unsigned char data =  data_ptr[c];// use cv::Mat::at() to get the pixel value// unsigned char is not printable// std::cout << std::isprint(data)<<std::isprint(image.at<cv::Vec3b>(y,x)[c]) << std::endl;std::cout << "pixel value at y, x ,c"<<static_cast<unsigned>(image.at<cv::Vec3b>(y,x)[c]) << std::endl;return 0;
}

2、代码说明

        代码的内容不复杂,主要就是打开一幅图片,然后获取指定点的像素信息。当然,这份代码只是起到抛砖引玉的作用,真正用起来,还需要和具体的场景关联起来。

3、编译方法

        前面我们说过,ros noetic里面支持的是opencv 4,所以这里代码也是用opencv4的库进行编译的,输入如下所示,

g++ test.cpp -o test `pkg-config --cflags --libs opencv4`

4、测试和调试

        代码测试的过程中,还需要一张图片,我们不妨去网上搜索一下lena的图片。她也是数字图像处理中用的最多的一张图片,

        这样程序和图片都准备好了,执行后不出意外的话,就可以看到这样的打印,

shell$ ./test
image wide: 500,image high: 500,image channels: 3
pixel value at y, x ,c177

5、python3实现图像处理

        实际生产中,一般是用python编写好算法之后,再转换成c/c++代码,这样效率要高很多。另外,不管是windows平台,还是linux平台,使用python都是很方便的。

import cv2def main():picture = cv2.imread('./test.jpg')cv2.imshow('lena', picture)cv2.waitKey(0)cv2.destroyAllWindows()if __name__ == '__main__':main()

        运行的方法,也比较简单,直接输入python3 ./test.py即可。

这篇关于SLAM从入门到精通(被忽视的基础图像处理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/354224

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

poj 2104 and hdu 2665 划分树模板入门题

题意: 给一个数组n(1e5)个数,给一个范围(fr, to, k),求这个范围中第k大的数。 解析: 划分树入门。 bing神的模板。 坑爹的地方是把-l 看成了-1........ 一直re。 代码: poj 2104: #include <iostream>#include <cstdio>#include <cstdlib>#include <al

MySQL-CRUD入门1

文章目录 认识配置文件client节点mysql节点mysqld节点 数据的添加(Create)添加一行数据添加多行数据两种添加数据的效率对比 数据的查询(Retrieve)全列查询指定列查询查询中带有表达式关于字面量关于as重命名 临时表引入distinct去重order by 排序关于NULL 认识配置文件 在我们的MySQL服务安装好了之后, 会有一个配置文件, 也就

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close