考虑设备动作损耗的配电网分布式电压无功优化(Matlab代码实现)

本文主要是介绍考虑设备动作损耗的配电网分布式电压无功优化(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💥💥💥💞💞💞欢迎来到本博客❤️❤️❤️💥💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

目录

💥1 部分复现

📚2 概述

🎉3 运行结果

👨‍💻4 Matlab代码

💥1 部分复现

 

📚2 概述

     摘要:电压无功控制是保证配电网经济安全运行的重要任务,协调多种调节手段能提高配电网的运行效率。考虑了有载调压变压器、电压调节器、分组投切电容器和分布式电源逆变器等电压无功调控设备,并针对现有电压无功控制模型存在的无谓动作和求解效率低等问题,提出了一种考虑设备动作损耗的配电网分布式电压无功优化策略。首先,基于支路潮流方程建立了配电网电压无功控制模型,并松弛为混合整数二阶锥规划。同时考虑到设备的动作损耗,提出了基于模型预测控制的滚动优化模式。进一步基于交替方向乘子法实现配电网多区域分布式协同优化。最后,基于改进的 IEEE33节点测试系统进行了仿真。仿真结果表明:所提控制策略能够避免设备的无谓动作,并解决了“维数灾”问题,提高了配电网的电压无功控制效率。

🎉3 运行结果

利用IEEE33测试节点算例说明二阶锥松弛的准确性

CPXPARAM_MIP_Display                             1Tried aggregator 1 time.QCP Presolve eliminated 9408 rows and 1704 columns.Aggregator did 336 substitutions.Reduced QCP has 7728 rows, 5712 columns, and 17808 nonzeros.Reduced QCP has 768 quadratic constraints.Presolve time = 0.01 sec. (6.80 ticks)Parallel mode: using up to 16 threads for barrier.Number of nonzeros in lower triangle of A*A' = 34104Using Approximate Minimum Degree orderingTotal time for automatic ordering = 0.00 sec. (2.49 ticks)Summary statistics for Cholesky factor:  Threads                   = 16  Rows in Factor            = 7728  Integer space required    = 12264  Total non-zeros in factor = 83880  Total FP ops to factor    = 1017720 Itn      Primal Obj        Dual Obj  Prim Inf Upper Inf  Dual Inf Inf Ratio   0   3.0337406e+02  -7.6106781e-01  7.30e+03  0.00e+00  6.21e+03  1.00e+00   1   3.0427107e+01   1.6560187e+00  7.30e+03  0.00e+00  6.21e+03  5.54e-01   2   5.5432810e+00   2.6608161e-01  7.32e+02  0.00e+00  6.22e+02  2.69e+00   3   8.5159524e-01  -9.6574600e-02  1.35e+02  0.00e+00  1.15e+02  1.50e+01   4   1.4611180e-01  -6.8774608e-02  2.43e+01  0.00e+00  2.06e+01  6.92e+01   5   5.7055442e-02  -8.7266983e-04  5.49e+00  0.00e+00  4.67e+00  3.22e+02   6   2.8129625e-02   1.9071094e-02  1.46e+00  0.00e+00  1.24e+00  2.37e+03   7   2.5320794e-02   2.3848906e-02  2.27e-01  0.00e+00  1.93e-01  1.82e+04   8   2.5013002e-02   2.4772517e-02  3.65e-02  0.00e+00  3.11e-02  1.42e+05   9   2.4971013e-02   2.4933730e-02  5.92e-03  0.00e+00  5.03e-03  1.32e+06  10   2.4964786e-02   2.4958751e-02  9.10e-04  0.00e+00  7.74e-04  1.07e+07  11   2.4963608e-02   2.4963505e-02  1.47e-04  0.00e+00  1.25e-04  1.63e+09  12   2.4963589e-02   2.4963588e-02  2.48e-06  0.00e+00  2.11e-06  3.29e+11时间已过 3.339317 秒。Ploss_total =    2.4964部分代码:

%定义变量
U=sdpvar(33,24);%电压的平方
I=sdpvar(32,24);%电流的平方
P=sdpvar(32,24);%线路有功
Q=sdpvar(32,24);%线路无功
Pg=sdpvar(33,24);%发电机有功
Qg=sdpvar(33,24);%发电机无功
Pin=-father*P+father*(I.*(r*ones(1,24)))+son*P;%节点注入有功
Qin=-father*Q+father*(I.*(x*ones(1,24)))+son*Q;%节点注入无功
Ploss_total=sum(sum(I.*(r*ones(1,24))));%目标函数,网损最小
%约束条件
C1=[U>=Umin,U<=Umax,Pg>=-Pgmax,Pg<=Pgmax,Qg>=-Qgmax,Qg<=Qgmax];%电压边界
C1=[C1,I>=0,I<=0.11,P>=-0.11,P<=0.11,Q>=-0.11,Q<=0.11];%电流和功率边界
C2=[Pin+Pload-Pg==0];%有功KCL约束
C3=[Qin+Qload-Qg==0];%无功KCL约束
C4=[U(Line(:,2),:)==U(Line(:,1),:)-2*(r*ones(1,24)).*P-2*(x*ones(1,24)).*Q+((r.^2+x.^2)*ones(1,24)).*I];%电压降落约束
C5=[U(Line(:,1),:).*I>=P.^2+Q.^2];%二阶锥约束
C=[C1,C2,C3,C4,C5];
toc%建模时间
ops=sdpsettings('solver','cplex');
result=solvesdp(C,Ploss_total,ops);
toc%求解时间
Ploss_total=100*double(Ploss_total)
P=double(P);Q=double(Q);U=double(U);I=double(I);
error=P.^2+Q.^2-U(Line(:,1),:).*I;
boxplot(error')

 

👨‍💻4 Matlab代码

这篇关于考虑设备动作损耗的配电网分布式电压无功优化(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/354181

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount