【HDL系列】进位旁边加法器原理与设计

2023-11-06 02:10

本文主要是介绍【HDL系列】进位旁边加法器原理与设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、进位旁边加法器

进位旁路加法器(Carry Skip Adder,CSA),也称Carry Bypass Adder。需要注意的是,CSA也是另外一种加法器——进位保存加法器(Carry Save Adder)的简称,关于这种加法器后期会介绍。

此前介绍了行波进位加法器RCA,第k位的进位Ck必须等待之前的Ck-1的结果才能计算出来,如下图进位c16必须等到前一级全加器的c15输出才可以计算,所以行波进位加法器的特点便是超长的进位传播链。

16比特RCA进位链示意图

进位旁边加法器的思想在于加速进位链的传播,在某种情况下,到达第i位的进位无需等待第i-1位进位。在16比特RCA中,最长的进位链为c0->c1->c2->…->c16,也就是说,每一位全加器都有进位,这条路径也是最长的关键路径。进位旁边加法器通过加入旁路逻辑来缩短这条最长路径,该旁路逻辑由2选1数据选择器,第x级进位和第y级进位和进位bypass信号组成。

4比特CSA结构

CSA结构如上,紫色部分为数据选择器,橙色部分为数据选择信号,数据来源为进位c0和第3个全加器的进位输出。

P3&P2&P1&P0=1c4=c0;进位c0直接传播至c4,而不需再经过4级全加器的延迟,这就是进位旁路加法器的核心。

为什么P3&P2&P1&P0=1时c0可以直接传播至c4?乍一看这个问题有点让人困扰。

先看c4的生成逻辑:

P3&P2&P1&P0=1时,则P3=P2=P1=P0=1,所以c4生成逻辑如下:

在介绍超前进位加法器中,我们定义了PG:

P是a与b异或的结果,只有a=0,b=1或者a=1,b=0时,P才可能等于1,而G=ab,所以只要P=1,G则一定为0,所以G3=G2=G1=G0=0。

最后结论与上述一致:P3&P2&P1&P0=1时,c4的生成逻辑最终变成c4=c0

二、进位旁路加法器关键路径与优化

将N比特加法器,以m比特为一组,分成N/m组,如下式16比特进位旁路加法器,N=16,m=4,共有4组,该16比特CSA由4比特CSA级联而成,其中4比特CSA4个全加器组成的Block进位逻辑Skip logic2选1数据选择器三部分组成。

16比特CSA结构

以上关键路径发生在:

  1. c0走第一级Block,经过4级全加器,进位从bit0到bit3生成c4。
  2. 中间进位经过bypass逻辑。
  3. 最后一级走Block逻辑,经过4级全加器,进位从bit12到bit15生成c16.

基于此结构通用的关键路径延迟公式为:

其中:

    Tsetup:A,B低位到第一级block的时间

    tcarry:每个进位传播Block中全加器产生进位的时间

    Tskip:进位通过skip逻辑的时间

    Tsum:从最后个进位到S输出的时间

可能在此处读者会有一个疑问,为什么最长的delay会是中间两级路径,如果加法器进位全部走Block逻辑,应该具有更长的延迟啊?其实走最长的路径,中间路径会被旁路,也就是执行0111_1111_1111_1111 + 0000_0000_0000_0001的情况。第一级进位产生后,中间两级被旁路,最后一级经过RCA进位链,也就是下图中红色描绘出的路径图。

16比特CSA关键路径图

三、进位旁路加法器Verilog设计

以下参数化cska(Carry Skip Adder, 为防止混淆取名cska)基于4比特cska设计,width可参数化定义为4的倍数,如20,24,32,64,128等。

默认16比特进位旁路加法器,由4个进位旁路加法器级联而成,每个进位旁路加法器中由4个全加器级联,且有进位旁路逻辑。

module cska #(width=16) (input  [width-1:0] op1,input  [width-1:0] op2,output [width-1:0] sum,output cout
);wire [width>>2:0] c;
assign c[0] = 0;
assign cout = c[width>>2];genvar i;
generate for( i=0; i<width>>2; i=i+1) begincska_4bit u_cska_4bit (.op1( op1[i*4+3:i*4] ),.op2( op2[i*4+3:i*4] ),.cin( c[i] ),.sum( sum[i*4+3:i*4] ),.cout( c[i+1]));end
endgenerateendmodule

cska_4bit模块中进位链和进位旁路逻辑:

//full adder and p generator
genvar i;
for( i=0; i<width; i=i+1) beginfull_adder_cska u_full_adder_cska(.a   ( op1[i]   ),.b   ( op2[i]   ),.cin ( c[i]     ),.cout( c[i+1]   ),.s   ( sum[i]   ),.p   ( p[i]     ));
end//carry bypass
assign sel = p[0] & p[1] & p[2] & p[3];
assign cout = sel ? cin : c[width];

Verilog源码公众号回复004。

欢迎指正错误,更多阅读,关注“纸上谈芯”,不定期更新,共同学习:

这篇关于【HDL系列】进位旁边加法器原理与设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/353902

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一