【HDL系列】进位旁边加法器原理与设计

2023-11-06 02:10

本文主要是介绍【HDL系列】进位旁边加法器原理与设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、进位旁边加法器

进位旁路加法器(Carry Skip Adder,CSA),也称Carry Bypass Adder。需要注意的是,CSA也是另外一种加法器——进位保存加法器(Carry Save Adder)的简称,关于这种加法器后期会介绍。

此前介绍了行波进位加法器RCA,第k位的进位Ck必须等待之前的Ck-1的结果才能计算出来,如下图进位c16必须等到前一级全加器的c15输出才可以计算,所以行波进位加法器的特点便是超长的进位传播链。

16比特RCA进位链示意图

进位旁边加法器的思想在于加速进位链的传播,在某种情况下,到达第i位的进位无需等待第i-1位进位。在16比特RCA中,最长的进位链为c0->c1->c2->…->c16,也就是说,每一位全加器都有进位,这条路径也是最长的关键路径。进位旁边加法器通过加入旁路逻辑来缩短这条最长路径,该旁路逻辑由2选1数据选择器,第x级进位和第y级进位和进位bypass信号组成。

4比特CSA结构

CSA结构如上,紫色部分为数据选择器,橙色部分为数据选择信号,数据来源为进位c0和第3个全加器的进位输出。

P3&P2&P1&P0=1c4=c0;进位c0直接传播至c4,而不需再经过4级全加器的延迟,这就是进位旁路加法器的核心。

为什么P3&P2&P1&P0=1时c0可以直接传播至c4?乍一看这个问题有点让人困扰。

先看c4的生成逻辑:

P3&P2&P1&P0=1时,则P3=P2=P1=P0=1,所以c4生成逻辑如下:

在介绍超前进位加法器中,我们定义了PG:

P是a与b异或的结果,只有a=0,b=1或者a=1,b=0时,P才可能等于1,而G=ab,所以只要P=1,G则一定为0,所以G3=G2=G1=G0=0。

最后结论与上述一致:P3&P2&P1&P0=1时,c4的生成逻辑最终变成c4=c0

二、进位旁路加法器关键路径与优化

将N比特加法器,以m比特为一组,分成N/m组,如下式16比特进位旁路加法器,N=16,m=4,共有4组,该16比特CSA由4比特CSA级联而成,其中4比特CSA4个全加器组成的Block进位逻辑Skip logic2选1数据选择器三部分组成。

16比特CSA结构

以上关键路径发生在:

  1. c0走第一级Block,经过4级全加器,进位从bit0到bit3生成c4。
  2. 中间进位经过bypass逻辑。
  3. 最后一级走Block逻辑,经过4级全加器,进位从bit12到bit15生成c16.

基于此结构通用的关键路径延迟公式为:

其中:

    Tsetup:A,B低位到第一级block的时间

    tcarry:每个进位传播Block中全加器产生进位的时间

    Tskip:进位通过skip逻辑的时间

    Tsum:从最后个进位到S输出的时间

可能在此处读者会有一个疑问,为什么最长的delay会是中间两级路径,如果加法器进位全部走Block逻辑,应该具有更长的延迟啊?其实走最长的路径,中间路径会被旁路,也就是执行0111_1111_1111_1111 + 0000_0000_0000_0001的情况。第一级进位产生后,中间两级被旁路,最后一级经过RCA进位链,也就是下图中红色描绘出的路径图。

16比特CSA关键路径图

三、进位旁路加法器Verilog设计

以下参数化cska(Carry Skip Adder, 为防止混淆取名cska)基于4比特cska设计,width可参数化定义为4的倍数,如20,24,32,64,128等。

默认16比特进位旁路加法器,由4个进位旁路加法器级联而成,每个进位旁路加法器中由4个全加器级联,且有进位旁路逻辑。

module cska #(width=16) (input  [width-1:0] op1,input  [width-1:0] op2,output [width-1:0] sum,output cout
);wire [width>>2:0] c;
assign c[0] = 0;
assign cout = c[width>>2];genvar i;
generate for( i=0; i<width>>2; i=i+1) begincska_4bit u_cska_4bit (.op1( op1[i*4+3:i*4] ),.op2( op2[i*4+3:i*4] ),.cin( c[i] ),.sum( sum[i*4+3:i*4] ),.cout( c[i+1]));end
endgenerateendmodule

cska_4bit模块中进位链和进位旁路逻辑:

//full adder and p generator
genvar i;
for( i=0; i<width; i=i+1) beginfull_adder_cska u_full_adder_cska(.a   ( op1[i]   ),.b   ( op2[i]   ),.cin ( c[i]     ),.cout( c[i+1]   ),.s   ( sum[i]   ),.p   ( p[i]     ));
end//carry bypass
assign sel = p[0] & p[1] & p[2] & p[3];
assign cout = sel ? cin : c[width];

Verilog源码公众号回复004。

欢迎指正错误,更多阅读,关注“纸上谈芯”,不定期更新,共同学习:

这篇关于【HDL系列】进位旁边加法器原理与设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/353902

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

怎么让1台电脑共享给7人同时流畅设计

在当今的创意设计与数字内容生产领域,图形工作站以其强大的计算能力、专业的图形处理能力和稳定的系统性能,成为了众多设计师、动画师、视频编辑师等创意工作者的必备工具。 设计团队面临资源有限,比如只有一台高性能电脑时,如何高效地让七人同时流畅地进行设计工作,便成为了一个亟待解决的问题。 一、硬件升级与配置 1.高性能处理器(CPU):选择多核、高线程的处理器,例如Intel的至强系列或AMD的Ry

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu