机器学习实战14-在日本福岛核电站排放污水的背景下,核电站对人口影响的分析实践

本文主要是介绍机器学习实战14-在日本福岛核电站排放污水的背景下,核电站对人口影响的分析实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,我是微学AI,今天给大家介绍一下机器学习实战14-在日本福岛核电站排放污水的背景下,核电站对人口影响的分析实践。
近日,日本政府举行内阁成员会议,决定于2023年8月24日启动福岛核污染水排海。当地时间2023年8月24日13时,日本福岛第一核电站启动核污染水排海。福岛第一核电站的核污水中含有多种放射性物质。对人体存在伤害,其中,锶-90可导致骨组织肉瘤、引发白血病;铯-137会引起软组织肿瘤与癌症;碘-129容易导致甲状腺癌;碳-14可能会损害人类DNA。
在这里插入图片描述

一、放射性物质

放射性物质 存在着三种主要的射线类型,它们分别是阿尔法射线(α)、贝塔射线(β)和伽马射线(γ):
1.阿尔法射线( α \alpha α射线):阿尔法射线是由氦原子核组成的带电粒子束。由于它们包含两个质子和两个中子,因此具有正电荷。阿尔法射线的穿透能力较弱,一般只能穿透数厘米的空气或者几个微米的固体,因此阿尔法射线通常不能通过人体或纸张等薄材料。然而,如果被内部摄入或吸入,则可能对人体造成较大的伤害。

2.贝塔射线( β \beta β射线):贝塔射线是由带电的高速电子或正电子组成的粒子束。电子射线称为 β − \beta^- β射线,而正电子射线称为 β + \beta^+ β+射线。贝塔射线比阿尔法射线具有更强的穿透能力,可以穿透空气和一些较薄的固体物质。然而,贝塔射线的穿透能力仍然相对有限,在适当的屏蔽下可以有效地阻挡。

3.伽马射线( γ \gamma γ射线):伽马射线是高能电磁辐射,类似于X射线。与阿尔法射线和贝塔射线不同,伽马射线不携带任何电荷或粒子,因此不受电场或磁场的影响。伽马射线具有很强的穿透能力,可以穿透大部分常见物质,包括人体组织。为了有效屏蔽伽马射线,通常需要使用较厚的铅、混凝土或其他密度较高的材料。

二、三种射线的核反应

以下是三种射线的典型核反应方程式的示例:

1.阿尔法射线 ( α \alpha α) 反应方程:
Z A X → Z − 2 A − 4 Y + 2 4 α \begin{equation} _{Z}^{A}X \rightarrow _{Z-2}^{A-4}Y + _{2}^{4}\alpha \end{equation} ZAXZ2A4Y+24α

这里 X X X 代表起始元素, Y Y Y 代表产生的元素, Z A _{Z}^{A} ZA 表示原子序数为 Z Z Z,质量数为 A A A 的核。

2.贝塔射线 ( β \beta β) 反应方程:
Z A X → Z + 1 A Y + e − + ν e ˉ \begin{equation} _{Z}^{A}X \rightarrow _{Z+1}^{A}Y + e^{-} + \bar{\nu_e} \end{equation} ZAXZ+1AY+e+νeˉ

这里 X X X 代表起始元素, Y Y Y 代表产生的元素, Z A _{Z}^{A} ZA 表示原子序数为 Z Z Z,质量数为 A A A 的核。 e − e^{-} e 表示负电子(电子), ν e ˉ \bar{\nu_e} νeˉ 表示反中微子。

3.伽马射线 ( γ \gamma γ) 反应方程:
Z A X ∗ → Z A X + γ \begin{equation} _{Z}^{A}X^{*} \rightarrow _{Z}^{A}X + \gamma \end{equation} ZAXZAX+γ

这里 X ∗ X^{*} X 表示激发态的核, X X X 表示基态的核, γ \gamma γ 表示伽马射线。
在这里插入图片描述

三、核电站的数据加载

数据下载地址:链接:https://pan.baidu.com/s/1wz5L2ykpjUNlKs2icTWkNg?pwd=2j0r
提取码:2j0r

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as pltdf = pd.read_csv('nuclear.csv', delimiter=',')countries_shortNames = [['UNITED STATES OF AMERICA', 'USA'], \['RUSSIAN FEDERATION', 'RUSSIA'], \['IRAN, ISLAMIC REPUBLIC OF', 'IRAN'], \['KOREA, REPUBLIC OF', 'SOUTH KOREA'], \['TAIWAN, CHINA', 'CHINA']]
for shortName in countries_shortNames:df = df.replace(shortName[0], shortName[1])

三、核电站的世界分布

import folium
import matplotlib.cm as cm
import matplotlib.colors as colorslatitude, longitude = 40, 10.0
map_world_NPP = folium.Map(location=[latitude, longitude], zoom_start=2)viridis = cm.get_cmap('viridis', df['NumReactor'].max())
colors_array = viridis(np.arange(df['NumReactor'].min() - 1, df['NumReactor'].max()))
rainbow = [colors.rgb2hex(i) for i in colors_array]for nReactor, lat, lng, borough, neighborhood in zip(df['NumReactor'].astype(int), df['Latitude'].astype(float),df['Longitude'].astype(float), df['Plant'], df['NumReactor']):label = '{}, {}'.format(neighborhood, borough)label = folium.Popup(label, parse_html=True)folium.CircleMarker([lat, lng],radius=3,popup=label,color=rainbow[nReactor - 1],fill=True,fill_color=rainbow[nReactor - 1],fill_opacity=0.5).add_to(map_world_NPP)# 在地图上显示
map_world_NPP.save('world_map.html')  # 保存为 HTML 文件
# 然后打开world_map.html 文件 可以看到

在这里插入图片描述
在这里插入图片描述

四、拥有最多核反应堆的20个国家对比

countries = df['Country'].unique()
df_count_reactor = [[i, df[df['Country'] == i]['NumReactor'].sum(), df[df['Country'] == i]['Region'].iloc[0]] for i incountries]
df_count_reactor = pd.DataFrame(df_count_reactor, columns=['Country', 'NumReactor', 'Region'])
df_count_reactor = df_count_reactor.set_index('Country').sort_values(by='NumReactor', ascending=False)[:20]
ax = df_count_reactor.plot(kind='bar', stacked=True, figsize=(10, 3),title='The 20 Countries With The Most Nuclear Reactors in 2010')
ax.set_ylim((0, 150))
for p in ax.patches:ax.annotate(str(p.get_height()), xy=(p.get_x(), p.get_height() + 2))
df_count_reactor['Country'] = df_count_reactor.index
sns.set(rc={'figure.figsize': (11.7, 8.27)})
sns.set_style("whitegrid")
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
ax = sns.barplot(x="NumReactor", y="Country", hue="Region", data=df_count_reactor, dodge=False, orient='h')
ax.set_title('2010年拥有最多核反应堆的20个国家', fontsize=16)
ax.set_xlabel('Reactors', fontsize=16)
ax.set_ylabel('')
ax.legend(fontsize='14')plt.show()

在这里插入图片描述

五、核电站暴露人口的分析

def getMostExposedNPP(Exposedradius):df_pop_sort = df.sort_values(by=str('p10_' + str(Exposedradius)), ascending=False)[:10]df_pop_sort['Country'] = df_pop_sort['Plant'] + ',\n' + df_pop_sort['Country']df_pop_sort = df_pop_sort.set_index('Country')df_pop_sort = df_pop_sort.rename(columns={str('p90_' + str(Exposedradius)): '1990', str('p00_' + str(Exposedradius)): '2000',str('p10_' + str(Exposedradius)): '2010'})df_pop_sort = df_pop_sort[['1990', '2000', '2010']] / 1E6ax = df_pop_sort.plot(kind='bar', stacked=False, figsize=(10, 4))ax.set_ylabel('Population Exposure in millions', size=14)ax.set_title('Location of nuclear power plants \n with the most exposed population \n within ' + Exposedradius + ' km radius',size=16)print(df_pop_sort['2010'])getMostExposedNPP('30')latitude, longitude = 40, 10.0
map_world_NPP = folium.Figure(width=100, height=100)
map_world_NPP = folium.Map(location=[latitude, longitude], zoom_start=2)for nReactor, lat, lng, borough, neighborhood in zip(df['NumReactor'].astype(int), df['Latitude'].astype(float),df['Longitude'].astype(float), df['Plant'], df['NumReactor']):label = '{}, {}'.format(neighborhood, borough)label = folium.Popup(label, parse_html=True)folium.Circle([lat, lng],radius=30000,popup=label,color='grey',fill=True,fill_color='grey',fill_opacity=0.5).add_to(map_world_NPP)Exposedradius = '30'
df_sort = df.sort_values(by=str('p10_' + str(Exposedradius)), ascending=False)[:10]for nReactor, lat, lng, borough, neighborhood in zip(df_sort['NumReactor'].astype(int),df_sort['Latitude'].astype(float),df_sort['Longitude'].astype(float), df_sort['Plant'],df_sort['NumReactor']):label = '{}, {}'.format(neighborhood, borough)label = folium.Popup(label, parse_html=True)folium.CircleMarker([lat, lng],radius=5,popup=label,color='red',fill=True,fill_color='red',fill_opacity=0.25).add_to(map_world_NPP)for nReactor, lat, lng, borough, neighborhood in zip(df_sort['NumReactor'].astype(int),df_sort['Latitude'].astype(float),df_sort['Longitude'].astype(float), df_sort['Plant'],df_sort['NumReactor']):label = '{}, {}'.format(neighborhood, borough)label = folium.Popup(label, parse_html=True)folium.Circle([lat, lng],radius=30000,popup=label,color='red',fill=True,fill_color='red',fill_opacity=0.25).add_to(map_world_NPP)
# 在地图上显示
map_world_NPP.save('world_map2.html')  # 保存为 HTML 文件

在这里插入图片描述

六、总结

如果核电站靠近人口密集区,核污染水排海可能对周边人口产生一些严重影响:

1.健康风险:放射性物质对人体健康产生潜在威胁。如果核污染水排入海洋,有可能通过海洋食物链的途径进入人类的食物供应链中,从而增加食物中放射性物质的摄入风险。不当接触或摄入这些物质可能导致慢性疾病,如癌症和其他与放射性物质相关的健康问题。

2.社会心理影响:核事故可能引发社会心理压力和不安感。居住在福岛核电站附近的居民可能面临被迫疏散、失去家园、生活不稳定等问题,这对他们的心理健康和社会适应能力造成挑战。

3.经济影响:核事故对当地经济造成了持续的冲击。核电站事故导致了大量的停工和疏散措施,对当地居民和企业的生计和经济活动造成了严重影响。此外,核事故还对当地旅游业、农业和渔业等行业带来负面影响,进一步加剧了经济困难。

这篇关于机器学习实战14-在日本福岛核电站排放污水的背景下,核电站对人口影响的分析实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/353126

相关文章

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景