手推广告论文(二)Wide Deep 推荐系统算法Wide Deep Learning for Recommender Systems

本文主要是介绍手推广告论文(二)Wide Deep 推荐系统算法Wide Deep Learning for Recommender Systems,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Wide & Deep Learning for Recommender Systems

论文地址https://arxiv.org/pdf/1606.07792.pdf

摘要

广义线性模型结合非线性特征转换,在处理具有大规模稀疏输入的回归和分类问题中已被广泛应用。通过一系列交叉积特征转换来记忆特征交互既有效又具有解释性,然而要实现更好的泛化性能,需要投入更多的特征工程工作。相较于此,深度神经网络能够通过为稀疏特征学习低维度密集嵌入,以较少的特征工程来更好地泛化至未见过的特征组合。但是,在用户与项目互动稀疏且高秩的情况下,具有嵌入的深度神经网络可能过度泛化,导致推荐的项目相关性较低。

为了解决这一问题,本文提出了一种名为Wide & Deep学习的方法,它联合训练宽线性模型和深度神经网络,将记忆与泛化的优势结合到推荐系统中。我们将该方法应用于Google Play商店,这是一个拥有超过10亿活跃用户和100万应用的商业移动应用平台,并对其进行了评估。在线实验结果表明,与仅使用宽模型或深模型相比,Wide & Deep方法显著提高了应用的下载量。同时,我们还在TensorFlow框架中开源了我们的实现方法。

CCS概念: • 计算方法 → 机器学习;神经网络;监督学习; • 信息系统 → 推荐系统;

关键词: Wide & Deep学习,推荐系统。

引言

推荐系统可以看作是一种搜索排名系统,它接收一组包含用户和上下文信息的输入查询,然后输出一个按照相关性排序的项目列表。在给定查询的情况下,推荐任务的目标是在数据库中找到相关的项目,并依据一定的目标(例如点击率或购买率)对这些项目进行排序。

与普通搜索排名问题类似,推荐系统面临的一个挑战是实现记忆和泛化的平衡。记忆可以简要地定义为学习项目或特征之间频繁共现的模式,并从历史数据中挖掘潜在的相关性。相对而言,泛化是基于相关性的传递性,旨在探索过去从未出现或很少出现的新特征组合。基于记忆的推荐通常更贴近用户兴趣,并与用户过去互动过的项目具有更直接的相关性。而与记忆相比,泛化更能够提高推荐项目的多样性,从而增加用户发现新内容的可能性。

本文主要关注Google Play商店的应用推荐问题,但所提出的方法同样适用于其他通用的推荐系统。

在实际应用中的大规模在线推荐和排名系统,广义线性模型(如逻辑回归)因其简单性、可扩展性和可解释性而被广泛采用。这些模型通常采用独热编码处理稀疏特征。以二进制特征“user_installed_app=netflix”为例,当用户安装了Netflix时,其值为1。有效地记忆特征可以通过在稀疏特征上进行交叉乘积转换来实现,例如AND(user_installed_app=netflix, impression_app=pandora)”,在用户安装了Netflix且后来安装了Pandora的情况下,其值为1。这表明特征对的共现与目标标签之间存在关联。通过使用较为宽泛的特征,例如AND(user_installed_category=video, impression_category=music),可以实现泛化,尽管可能需要进行手动特征工程。交叉乘积转换的局限在于,它们无法泛化到训练数据中未出现过的查询-项目特征对。

基于嵌入的模型,如因子分解机或深度神经网络,通过为每个查询和项目特征学习低维密集嵌入向量,减少了特征工程的负担,从而使模型能够泛化到之前未见过的查询-项目特征对。然而,在查询-项目矩阵稀疏且高秩的情况下(例如具有特定喜好的用户或只吸引少数人的小众项目),学习有效的低维表示可能会变得困难。在这种情况下,大部分查询-项目对之间实际上不存在交互,但密集嵌入可能导致所有查询-项目对都产生非零预测,从而导致过度泛化和不够相关的推荐结果。相比之下,采用交叉乘积特征转换的线性模型可以用更少的参数捕捉到这些“特殊规则”,从而更好地处理这种情况。

编辑切换为居中

添加图片注释,不超过 140 字(可选)

在本文中,我们提出了一种名为“Wide & Deep”学习框架&#

这篇关于手推广告论文(二)Wide Deep 推荐系统算法Wide Deep Learning for Recommender Systems的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/352929

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig