集成聚类之EAC算法(证据积累数据聚类)附:单连接(SL)易理解详谈

2023-11-05 20:41

本文主要是介绍集成聚类之EAC算法(证据积累数据聚类)附:单连接(SL)易理解详谈,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       最近要写论文涉及到聚类集成,想先从EAC做起,集成方面做得还不是很好。如果有机会的话,希望也在研究集成聚类的大佬们和我联系,一起研究探讨集成聚类这方面的知识。感谢各位!

   

       证据积累的想法是这样的:将每个聚类结果作为数据组织独立的证据,把多个聚类的结果合并到一个分区中。

 

方法为拆分合并:

(1)拆分:把大型的多维数据分成小型的球型簇。

                    使用K-Means算法执行此步骤,因为通过K的随机初始化,可以获得各种聚类结果。

(2)结合:为将不同数目的聚类分区并到一块,使用“投票法”合并聚类的结果。

         那么肯定会有这么一种可能,“自然”产生的集群可能在不同集群下的统一集群(不同的划分,做出一个邻近度矩阵)          

         在同一个集群下模式对的同时出现做一个投票标记给关联上。做一个矩阵co-assocation(i,j)=\frac{votes_{ij}}{N}

         N是聚类的数目,votes_{ij}是ij对,被分配给N个聚类数中相同聚类的次数。

(3)合并:恢复自然簇,根据邻域关系,用MST算法(最小生成树),用t的阙值切断弱连接,这句话说的专业一点就是用阙值t在相似性矩阵上切割单连接(SL)生成的树状图,来合并拆分阶段生成的簇。

补充

          1.MST(最小生成树):学过数据结构的一定都会,包括解决方法两种,克鲁斯卡尔和普利姆算法,很简单,如果有忘记的朋友们可以自行复习一下。

          2.那么什么是单连接(SL)呢?:单连接和全连接都是由(2)的邻近度矩阵所出现的。

                                                                 单连接是作用于阙值图的

(阙值图是N个节点的无向图,每个节点都是一个对象,图中不存在环和多重边。用G(v)表示,v表示不相似的程度。给一个v,如果节点i和j之间的不相似度小于v,就在i和j之间插入一条边edge(i,j)。)

例:邻近度矩阵:D=\begin{Bmatrix} 0\, \, 0\, \, 0\, \, 2\, \,0\\ 0\, \, 0\, \, 1\, \, 5\, \, 3\\ 0\, \, 1\, \, 0\, \, 0\, \, 0\\ 2\, \, 5\, \, 0\, \, 0\, \, 4\\ 0\, \, 3\, \, 0\, \, 4\, \, 0 \end{Bmatrix}设定邻近度为5

(1)G(0):刚开始都是点,没有边,每个点都是一个簇,有n个点就是有n个簇。

(2)G(1):根据邻近度矩阵,找1,发现(2,3)满足条件

(3)G(2):找2,发现

(4)G(3):(2,5)

(5)G(4):设定不超过5,所以4是最后一个(4,5)

我们做聚类,最后把它拉成树状图:

总结

EAC步骤:

n ---维数    k---初始簇数   N---聚类数   t---阙值   邻近度矩阵设为空

(1)做N次:1.随机选择K聚类中心;2.初始化用K-Means,生成分区P;3.更新关联度矩阵,对P中同一集群中每对ij更新

(2)用SL找到一致性簇:1.投票法找到多数关联,对每对(i,j)合并到统一集群;2.没包含集群里剩下的做单个集群。

 

本人尚才疏学浅,如内容中有任何错误的地方,望告知,我会加以修改,之后会继续更新。

这篇关于集成聚类之EAC算法(证据积累数据聚类)附:单连接(SL)易理解详谈的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/352372

相关文章

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文