数据结构与算法之堆: Leetcode 451. 根据字符出现频率排序 (Typescript版)

本文主要是介绍数据结构与算法之堆: Leetcode 451. 根据字符出现频率排序 (Typescript版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

根据字符出现频率排序

  • https://leetcode.cn/problems/sort-characters-by-frequency/

描述

  • 给定一个字符串 s ,根据字符出现的 频率 对其进行 降序排序 。一个字符出现的 频率 是它出现在字符串中的次数。
  • 返回 已排序的字符串 。如果有多个答案,返回其中任何一个。

示例 1

输入: s = "tree"
输出: "eert"
解释: 'e'出现两次,'r'和't'都只出现一次。
因此'e'必须出现在'r'和't'之前。此外,"eetr"也是一个有效的答案。

示例 2

输入: s = "cccaaa"
输出: "cccaaa"
解释: 'c'和'a'都出现三次。此外,"aaaccc"也是有效的答案。
注意"cacaca"是不正确的,因为相同的字母必须放在一起。

示例 3

输入: s = "Aabb"
输出: "bbAa"
解释: 此外,"bbaA"也是一个有效的答案,但"Aabb"是不正确的。
注意'A'和'a'被认为是两种不同的字符。

提示

  • 1 <= s.length <= 5 * 1 0 5 10^5 105
  • s 由大小写英文字母和数字组成

算法实现

1 )普通方法实现, 基于原生sort和Map结构

function frequencySort(s: string): string {// 1. 构建map字典,例如: Map{a: 2, b: 3}const map = new Map();s.split('').forEach(item => {map.set(item, map.has(item) ? map.get(item) + 1 : 1);});// 2. 将map转成二维数组进行排序const arr = Array.from(map);arr.sort((a, b) => b[1] - a[1]);// 3. 基于排好序的数组(降序)组装成最终结果let result = '';arr.forEach((item) => {result += item[0].repeat(item[1]);})return result;
};
  • 这里使用平时最简单的原生排序法,结合Map数据结构的特性,和ES6中字符串的特性完成
  • 原生排序,性能不错 O(nlogn),推荐

2 )使用堆排序

class MaxHeap {map: Map<string, number> = new Map()heap: number[] = []init(str:string) {// 构建map字典const { map } = this;str.split('').forEach(item => {map.set(item, map.has(item) ? map.get(item) + 1 : 1);});this.heap = Array.from(map.values());}sort () {const iArr = this.heap;const n = iArr.length;if (n <= 1) return iArr;for (let i = Math.floor(n / 2); i >= 0; i--) {MaxHeap.maxHeapify(iArr, i, n);}for (let j = 0; j < n; j++) {MaxHeap.swap(iArr, 0, n - 1 - j);MaxHeap.maxHeapify(iArr, 0, n - 1 - j - 1);}return iArr;}// 排序并转成字符串sortToString () {const arr = this.sort(); // 这里对值进行排序const str = [];while (arr.length) {const top = arr.pop();for (const [k, v] of this.map) {// 值和值匹配if (v === top) {str.push(k.repeat(v));this.map.delete(k); // 使用过的key防止重复匹配 这里记得删除break}}}return str.join('');}// 交换两个元素static swap (arr, i, j) {if (i === j) return;[arr[i], arr[j]] = [arr[j], arr[i]];}// 构建最大堆的过程static maxHeapify (Arr, i, size) {// 左节点(索引)const l = (i << 1) + 1;// 右节点const r = (i << 1) + 2;let largest = i;// 父节点i和左节点l做比较取最大if (l <= size && Arr[l] > Arr[largest]) largest = l;// 右节点和最大值比较if (r <= size && Arr[r] > Arr[largest]) largest = r;if (largest !== i) {MaxHeap.swap(Arr, i, largest);MaxHeap.maxHeapify(Arr, largest, size);}}
}function frequencySort(s: string): string {const mh = new MaxHeap();mh.init(s);return mh.sortToString();
}
  • 如果这个堆之前构建好,只需要少许修改,即可投入使用
  • 理解了最大堆的构建过程,这个还是比较推荐使用的
  • 需要注意的是在while和for的嵌套循环中的时间复杂度的考量
    • while是每次pop从n直到为0,因此是 n
    • for不会每次都执行n次,匹配到时会被break掉,因此是 logn
    • 所以整体时间复杂度为 O(nlogn)

这篇关于数据结构与算法之堆: Leetcode 451. 根据字符出现频率排序 (Typescript版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/3486

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

hdu 1285(拓扑排序)

题意: 给各个队间的胜负关系,让排名次,名词相同按从小到大排。 解析: 拓扑排序是应用于有向无回路图(Direct Acyclic Graph,简称DAG)上的一种排序方式,对一个有向无回路图进行拓扑排序后,所有的顶点形成一个序列,对所有边(u,v),满足u 在v 的前面。该序列说明了顶点表示的事件或状态发生的整体顺序。比较经典的是在工程活动上,某些工程完成后,另一些工程才能继续,此时