Pytorch卷积神经网络经典Backbone(骨干网络)——(VGG)

2023-11-05 02:30

本文主要是介绍Pytorch卷积神经网络经典Backbone(骨干网络)——(VGG),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

VGG网络架构:
VGG16网络由13层卷积层+3层全连接层构成
在这里插入图片描述

1.1改进:

1.更小的卷积核,对比AlexNet,VGG网络使用的卷积核大小不超过33,这种结构相比于大卷积核有一个优点,就是两个33的卷积核堆叠对于原图提取特征的感受野(特征图一个像素融合了输入多少像素的信息决定了感受野的大小)相当于一个55的卷积核(如图),在同等感受野的条件下,两个33卷积之间加入激活函数,其非线性能力比单个5*5卷积要强。
在这里插入图片描述
2.更深的网络结构,相比于AlexNet只有5层卷积层,VGG系列加深了网络的深度,更深的结构有助于网络提取图像中更复杂的语义信息。

1.2pytorch复现VGG19

#全连接层分类:self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 4096),nn.ReLU(inplace = True),nn.Dropout(),nn.Linear(4096,4096),nn.ReLU(inplace = True),nn.Dropout(),nn.Linear(4096,num_classes),)#前向传播def forward(self, x):x = self.features(x)x = x.view(x.size(0), -1)x = self.classifier(x)return x

1.2.1 小Tips:
当网络的结构重复时,使用for循环构造避免代码形式冗余
将不同功能的网络各自封装到一个大的Sequential模块中,结构分明
卷积操作输出尺寸计算公式:Out=(In-Kernel+2Padding)/Stride+1 (Kernel:卷积核尺寸,Stride:步长,Padding:边界填充) 若要保证输出尺寸和原尺寸一致,Padding可以设置为:Padding = (kernel-1)/2)
池化操作输出尺寸计算公式同卷积操作一致
在实际深度学习框架实现卷积和全连接的计算中,本质都是矩阵运算:
若输入的特征图深度是N,输出特征图深度是M,则卷积核的维度是:NxMxKxK(K为卷积核大小)。因此全卷积网络对输入图像的尺寸没有要求。
全连接层的尺寸和输入的特征尺寸相关(将特征图展平成为一维向量),若输入的特征向量是1xN,输出是1xM,则全连接层的维度是:MxN。

1.2.2 打印网络信息:
使用torch.summary输出网络架构:

vgg19 = VGG19()#print(vgg19) #输出网络的架构
summary(vgg19, input_size = [(3, 224, 224)]) #输出网络架构,每一层的输出特征尺寸,及网络参数情况

输出网络每一层的尺寸:

for param in vgg19.parameters(): # 输出每一层网络的尺寸print(param.size())batch_size = 16
input = torch.randn(batch_size, 3, 224, 224) #构建一个随机数据,模拟一个batch_size
output = vgg19(input)
print(output.shape)  # torch.Size([16, 1000])

摘抄于:https://mp.weixin.qq.com/s?__biz=MzI4MDYzNzg4Mw==&mid=2247549661&idx=2&sn=da8151219635919414e7181acc27926e&chksm=ebb73a09dcc0b31fcdc05e043c087f467225129a0ba7440e60d08399f5c55afa1c787fa61e9c&scene=27

这篇关于Pytorch卷积神经网络经典Backbone(骨干网络)——(VGG)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/346784

相关文章

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

poj 3181 网络流,建图。

题意: 农夫约翰为他的牛准备了F种食物和D种饮料。 每头牛都有各自喜欢的食物和饮料,而每种食物和饮料都只能分配给一头牛。 问最多能有多少头牛可以同时得到喜欢的食物和饮料。 解析: 由于要同时得到喜欢的食物和饮料,所以网络流建图的时候要把牛拆点了。 如下建图: s -> 食物 -> 牛1 -> 牛2 -> 饮料 -> t 所以分配一下点: s  =  0, 牛1= 1~

poj 3068 有流量限制的最小费用网络流

题意: m条有向边连接了n个仓库,每条边都有一定费用。 将两种危险品从0运到n-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。 求最小的费用是多少。 解析: 抽象出一个源点s一个汇点t,源点与0相连,费用为0,容量为2。 汇点与n - 1相连,费用为0,容量为2。 每条边之间也相连,费用为每条边的费用,容量为1。 建图完毕之后,求一条流量为2的最小费用流就行了

poj 2112 网络流+二分

题意: k台挤奶机,c头牛,每台挤奶机可以挤m头牛。 现在给出每只牛到挤奶机的距离矩阵,求最小化牛的最大路程。 解析: 最大值最小化,最小值最大化,用二分来做。 先求出两点之间的最短距离。 然后二分匹配牛到挤奶机的最大路程,匹配中的判断是在这个最大路程下,是否牛的数量达到c只。 如何求牛的数量呢,用网络流来做。 从源点到牛引一条容量为1的边,然后挤奶机到汇点引一条容量为m的边