数学建模(二)、TOPSIS法(优劣解距离法)

2023-11-04 23:51

本文主要是介绍数学建模(二)、TOPSIS法(优劣解距离法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TOPSIS 法(优劣解距离法)

    • 1、什么是 TOPSIS 法(优劣解距离法)?
    • 2、解法步骤
      • 统一指标类型
      • 标准化处理(消除不同指标量纲的影响)
      • 通过标准化矩阵计算评分

1、什么是TOPSIS法(优劣解距离法)?

TOPSIS 法是一种理想目标相似性的顺序选优技术,在多目标决策分析中是一种非常有效的方法。它通过归一化后的数据规范化矩阵,找出多个目标中最优目标和最劣目标 (分别用理想解和反理想解表示) , 分别计算各评价目标与理想解和反理想解的距离,获得各目标与理想解的贴近度,按理想解贴近度的大小排序,以此作为评价目标优劣的依据。贴近度取值在 0~1 之间,该值愈接近 1, 表示相应的评价目标越接近最优水平;反之,该值愈接近 0, 表示评价目标越接近最劣水平。

2、解法步骤

统一指标类型

常见的四种指标
在这里插入图片描述
将所有指标转化位极大型称为指标正向化(最常用)

  • 极小型指标转换为极大型指标:
    1、公式: m a x − x max-x maxx
    2、如果所有的元素均为正数,那么也可以使用 1 / x 1/x 1/x

  • 中间型指标转换为极大型指标: M = m a x { ∣ x i − x b e s t ∣ } , x z = 1 − ( ∣ x i − x b e s t ∣ / M ) M=max\left \{ |x_{i}-x_{best}|\right \},x_{z}=1-(|x_{i}-x_{best}|/M) M=max{xixbest},xz=1(xixbest/M)

在这里插入图片描述

  • 区间型指标转换为极大型指标:
    在这里插入图片描述

标准化处理(消除不同指标量纲的影响)

假设有n个需要评价的对象,m个评价指标(全部正向化)构成的正向化矩阵:
在这里插入图片描述
在这里插入图片描述
通过逐一计算出zij的数值可以列出标准化矩阵Z

通过标准化矩阵计算评分

在标准化矩阵Z中
在这里插入图片描述
找出最大值 Z+
Z + = ( Z 1 + , Z 2 + , . . . , Z m + ) Z^{+}=(Z_{1}^{+},Z_{2}^{+},...,Z_{m}^{+}) Z+=(Z1+,Z2+,...,Zm+)
其中每一个元素为标准化矩阵中该元素所在列的最大值:
在这里插入图片描述
找出最小值 Z-
Z − = ( Z 1 − , Z 2 − , . . . , Z m − ) Z^{-}=(Z_{1}^{-},Z_{2}^{-},...,Z_{m}^{-}) Z=(Z1,Z2,...,Zm)
其中每一个元素为标准化矩阵中该元素所在列的最小值:
在这里插入图片描述
计算出评价对象与最大 / 小值的的距离
最后进行归一化处理
在这里插入图片描述
最后得到的S越大则代表目标越优

这篇关于数学建模(二)、TOPSIS法(优劣解距离法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/346025

相关文章

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

OCC开发_变高箱梁全桥建模

概述     上一篇文章《OCC开发_箱梁梁体建模》中详细介绍了箱梁梁体建模的过程。但是,对于实际桥梁,截面可能存在高度、腹板厚度、顶底板厚度变化,全桥的结构中心线存在平曲线和竖曲线。针对实际情况,通过一个截面拉伸来实现全桥建模显然不可能。因此,针对变高箱梁,本文新的思路来实现全桥建模。 思路 上一篇文章通过一个截面拉伸生成几何体的方式行不通,我们可以通过不同面来形成棱柱的方式实现。具体步骤

CSP-J基础之数学基础 初等数论 一篇搞懂(一)

文章目录 前言声明初等数论是什么初等数论历史1. **古代时期**2. **中世纪时期**3. **文艺复兴与近代**4. **现代时期** 整数的整除性约数什么样的整数除什么样的整数才能得到整数?条件:举例说明:一般化: 判断两个数能否被整除 因数与倍数质数与复合数使用开根号法判定质数哥德巴赫猜想最大公因数与辗转相除法计算最大公因数的常用方法:举几个例子:例子 1: 计算 12 和 18

2024年AMC10美国数学竞赛倒计时两个月:吃透1250道真题和知识点(持续)

根据通知,2024年AMC10美国数学竞赛的报名还有两周,正式比赛还有两个月就要开始了。计划参赛的孩子们要记好时间,认真备考,最后冲刺再提高成绩。 那么如何备考2024年AMC10美国数学竞赛呢?做真题,吃透真题和背后的知识点是备考AMC8、AMC10有效的方法之一。通过做真题,可以帮助孩子找到真实竞赛的感觉,而且更加贴近比赛的内容,可以通过真题查漏补缺,更有针对性的补齐知识的短板。

一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

1.没有分段的情况 原函数为一元二次凹函数(开口向下),如下: 因为要使得其存在正解,必须满足,那么。 上述函数的最优结果为:,。 对应的mathematica代码如下: Clear["Global`*"]f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)Maximize[{f0[x, a, b,