搭建Deformable Part Models源码+学习分析

2023-11-04 09:58

本文主要是介绍搭建Deformable Part Models源码+学习分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 跑通代码:

代码地址: http://people.cs.uchicago.edu.sixxs.org/~rbg/latent/  Version 5 (Sept. 5, 2012)

别忘 mex -setup !!!

1)

在windows下运行Felzenszwalb的Discriminatively Trained Deformable Part Models matlab代码

2)

最简单的方式使用Discriminatively Trained Deformable Part Models训练自己的模型(原创)

Pozen的工作还是主要讲怎么在windows下训练,其中怎么准备数据说的不是很清楚,我这里稍微补充一下吧。(注意:我是在linux下跑的,windows下还要参考pozen的工作)

3)

How to train models of Object Detection with Discriminatively Trained Part Based Models

 

不错的建议:1.  训练模型都交给选来的matlab代码,在线检测的部分就把他翻译成c++。

2. “最近我把检测部分(star-cascade)翻译成了C++的, 实现了检测部分,现在正在训练自己的模型呢”实 际运用中实时是没有问题的,可以从多个方面优化。首先多线程,求特征金字塔的时候,扫描检测的时候都应该用到。另算法本身也有改进与优化的余地,这样做得好的话10+/s没得问题。 处理视频的话,可以在加一些外部优化。

 

Deformable Part Model学习

 

//推荐博客:

 

冒泡的崔

http://bubblexc.com/

//

1. http://bubblexc.com.sixxs.org/y2011/422/

Deformable Part Model是最近两年最为流行的图像中物体检测模型,利用这个模型的方法在近几届PASCAL VOC Challenge中都取得了较好的效果。其作者,芝加哥大学的Pedro Felzenszwalb教授,也因为这项成就获得了VOC组委会授予的终身成就奖。有人认为这个模型是目前最好的物体检测算法。

不同于bag of features和hog模板匹配,这类“object conceptually weaker”的模型,在Deformable Part Model中,通过描述每一部分和部分间的位置关系来表示物体(part+deformable configuration)。其实早在1973年,Part Model就已经在 "The representation and matching of pictorial structures" 这篇文章中被提出了。

 

图1:part model

Pedro Felzenszwalb教授提出的Deformable Part Model用到了三方面的知识:1.Hog Features 2.Part Model 3. Latent SVM。

  1. 作者通过Hog特征模板来刻画每一部分,然后进行匹配。并且采用了金字塔,即在不同的分辨率上提取Hog特征
  2. 利用上段提出的Part Model。在进行object detection时,detect window的得分等于part的匹配得分减去模型变化的花费。
  3. 在训练模型时,需要训练得到每一个part的Hog模板,以及衡量part位置分布cost的参数。文章中提出了Latent SVM方法,将deformable part model的学习问题转换为一个分类问题。利用SVM学习,将part的位置分布作为latent values,模型的参数转化为SVM的分割超平面。具体实现中,作者采用了迭代计算的方法,不断地更新模型。

作者的页面上有模型的matlab实现源码,必须运行在linux或mac平台中。另外,源码中已经包含PASCAL VOC中各个类别训练好的模型,可以直接用,如果需要自己训练模型,这个过程是很耗时的。为了提高效率,作者又在2010年的“Cascade Object Detection with Deformable Part Models”这篇文章中对part model做了改进,将效率提高了20倍左右。

相关资料:

  1. Fischler, M.A. and Elschlager, R.A. The representation and matching of pictorial structures, 1973
  2. Felzenszwalb, P.F. and Huttenlocher, D.P. Pictorial structures for object recognition,2005
  3. http://people.csail.mit.edu.sixxs.org/torralba/courses/6.870/slide/6870_2008-09-10_histograms_pinto_opt.pdf

 

2.  opencv advanture

 

The sample program only demonstrates how to use the latent SVM for classification. The paper describes the training part in details. Although I don't understand all of it, here is the summary:

Latent SVM is a system built to recognize object by matching both
1. the HOG models, which consists of the 'whole' object and a few of its 'parts', and 2. the position of parts. The learned positions of object-parts and the 'exact' position of the whole object are the Latent Variables. The 'exact' position is with regard to the annotated bounding box from the input image. As an example, a human figure could be modeled by its outline-shape (whole-body head-to-toe) together with its parts (head, upper-body, left arm, right arm, left lower lib, right lower lib, feet).

The HOG descriptor for the whole body is Root Filter and those for the body parts are Parts Filter.

The target function is the best response by scanning a window over an image. The responses consists of the outputs from the all the filters. The search for best match is done in a multi-scale image pyramid. The classifier is trained iteratively using coordinate-descent method by holding some components constant while training the others. The components are Model Parameters (Filters Positions, Sizes), weight coefficients and error constants. The iteration process is a bit complicated - so much to learn! One important thing to note is the positive samples are composed of moving the parts around an allowable distance. There is a set of latent variables for this ( size of the movable-region, center of all the movable-regions, quadratic loss function coefficients). Able to consider the 'movable' parts is what I think being 'deformable' means.

Detection Code

The code for latent SVM detector code is located at OpenCV/modules/objdetect/. It seems to be self-contained. It has all the code needed to build HOG pyramids.
The detection code extract HOG descriptors from the input image and build multi-scale pyramids. It then scan the models (root and parts) over the pyramids for the good matches. Non-max suppression is used I think to remove those proximity matches. A threshold is applied to the score from SVM equation to determine the classification.


Datasets
Some trained models in matlab file format (voc-release4.tgz and older) are available for download at the website. But how to convert the available matlab files (such as cat_final.mat) to that XML format? There is a VOCWriteXML function in the VOC devkit (in matlab). Wonder if that could help. http://fwd4.me/wSG

Sample (latentsvmdetector.cpp)
  • Load a pre-built model and detect the object from an input image.
  • There does not seem to be a detector builder in OpenCV.
  • By looking at cat.xml The cat model has 2 models. They are probably bilateral symmetric model. Each model has 6 parts. The root filter sizes are 7x11 and 8x10.

Results (with cat.xml model)

  • [cat.jpg] Took 61 seconds to finish. Able to detect the cat. Two false-positives at the top-right corner.
  • [lena.jpg] Took 77 seconds. It detected Lena's beautiful face (including the purple feather hat and shoulder) ! Two other detected objects: her hat and some corner at the top-left corner of the picture.
  • [tennis-cats.jpg] Took 44 seconds. It detected all 3 cats. Although the middle one and left cat and treated as one. Those two are closer together.
  • [295087.jpg from GrabCut collection] Took 50 seconds. Somehow classified the Tree and the Rock Landscape as a cat!
  • [260058.jpg from GrabCut collection] Took 76.5 seconds. Detected two false objects: 1) an area of the desert sand (small pyramid at the top edge), 2) part of the sky with clouds nears the edges.
  • Without knowing how the model is trained, hard to tell the quality of this detector.http://tech.dir.groups.yahoo.com/group/OpenCV/message/75507; It is possible that it is taken from the 'trained' classifier parameters from the releases from the paper author (voc*-release.tgz).


Resources

Latent SVM: http://people.cs.uchicago.edu/~pff/latent/

Readings
A Discriminatively Trained, Multiscale, Deformable Part Model, P. Felzenszwalb, et al.

 

这篇关于搭建Deformable Part Models源码+学习分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/344972

相关文章

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

MongoDB搭建过程及单机版部署方法

《MongoDB搭建过程及单机版部署方法》MongoDB是一个灵活、高性能的NoSQL数据库,特别适合快速开发和大规模分布式系统,本文给大家介绍MongoDB搭建过程及单机版部署方法,感兴趣的朋友跟随... 目录前言1️⃣ 核心特点1、文档存储2、无模式(Schema-less)3、高性能4、水平扩展(Sh

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

vite搭建vue3项目的搭建步骤

《vite搭建vue3项目的搭建步骤》本文主要介绍了vite搭建vue3项目的搭建步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1.确保Nodejs环境2.使用vite-cli工具3.进入项目安装依赖1.确保Nodejs环境

Nginx搭建前端本地预览环境的完整步骤教学

《Nginx搭建前端本地预览环境的完整步骤教学》这篇文章主要为大家详细介绍了Nginx搭建前端本地预览环境的完整步骤教学,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录项目目录结构核心配置文件:nginx.conf脚本化操作:nginx.shnpm 脚本集成总结:对前端的意义很多

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的