大促流量激增,通过什么手段提升系统的高并发、高可用性?

2023-11-04 09:30

本文主要是介绍大促流量激增,通过什么手段提升系统的高并发、高可用性?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在之前提到过,最近运营在前面搞了一个活动,比如抽奖,发放优惠券等方式,去吸引用户购买商品,但是卡券的有效时间只有2个小时,这样的话用户支付动作会比较集中,这也就对我们的支付系统有了更高的要求。所以,如何在流量激增的情况下保证支付服务的高并发和高可用性是对我们的要求。

经过一系列的压测、调优,达到了预期的QPS。结果不是最重要的,最重要的是期间的调优过程,所以将最近在压测过程中出现的问题以及调优的过程复盘并记录下来,以便日后查看。如果大家面临类似流量突增的情况会怎么调优呢?

网络架构图

上图为我们目前简易的一个网络架构以及组件应用图,我将按照网络流量传递方式进行总结。

SLB

首先进行配置升级的就是流量入口的位置,即SLB。按照预估流量,以前SLB的QPS为5W,这次大促活动,将核心模块SLB的QPS升级至10W。

Nginx

接下来是负载均衡组件Nginx,因为本身Nginx的QPS就是万级别以上了,我们在压测过程中发现Nginx并不是瓶颈,所以就没有进行升配。

网络

因为我们的应用服务目前存在私有部署和阿里云部署,所以中间存在着网络专线,所以本次压测过程中重点关注了网络延迟,发现其中的网络延迟为毫秒级,可以接受,并未对网络带宽进行升级,不过这也是一个其中的一个风险点,如果在活动期间专线网络存在抖动的情况,可能会影响到核心服务的质量。

阿里云ECS

下面就到达了具体的服务应用部分,因为我们的服务全部都是通过网关(SpringCloud Gateway)进行统一服务转发的,所以在经过压测和流量评估后将网关进行了机器扩容和配置升级,由原来的4C8G升级为8C16G。

对于核心业务交易模块的机器也进行了翻倍扩容,以此来增加系统的整体吞吐量,增加机器后集群整体TPS和QPS提升比较明显。

Tomcat

本次调优过程中,对Tomcat核心参数也进行了调优,主要包含最大连接数和最大线程数等,对于4C8G对机器来说,建议设置参数如下:

server:tomcat:accept-count: 1000max-connections: 10000 max-threads: 800 min-spare-threads: 100

缓存

提高系统查询性能的利器就是使用缓存了,以此来提升系统的访问速度、增大系统的处理容量、提升性能和缓解数据库压力。对于一些不怎么经常变得数据,我们使用的Redis来作为缓存。不过使用Redis作为缓存也需要考虑其可能发生的问题,也就是缓存穿透、缓存击穿和缓存雪崩的问题。针对以上问题,行业上都有比较成熟的解决方案,下面我们依次解释,并记录下处理方案。

缓存穿透:请求去查询一条数据库中压根就不存在的数据,也就是缓存和数据库都查询不到这条数据,这样的话请求每次都会打到数据库上面去。

穿透产生问题:如果有黑客对你的系统进行攻击,拿一个不存在的id 去查询数据,会产生大量的请求到数据 库去查询。可能会导致你的数据库由于压力过大而宕掉。

穿透解决方案:1)缓存中没有存储这些空数据的key。去数据库中查询也没有, 那么我们就可以为这些key对应的值设置为null丢到缓存里面去。后面再出现查询这个key 的请求的时候,直接返回null ;

2)布隆过滤器是将所有可能存在的Key的Hash到一个足够大的bitmap中,在缓存之前再加一层布隆过滤器 ,在查询的时候先去布隆过滤器去查询key是否存在,如果不存在就直接返回,存在再走查缓存或者查DB。

缓存击穿:在高并发的系统中,大量的请求同时查询一个 key 时,此时这个key正好失效了,就会导致大量的请求都打到数据库上面去。

击穿产生问题:在高并发的系统中,大量的请求同时查询一个 key 时,此时这个key正好失效了,就会导致大量的请求都打到数据库上面去。

击穿解决方案:1)可以在第一个查询数据的请求上使用一个互斥锁来锁住它。其他的线程走到这一步拿不到锁就等着,等第一个线程查询到了数据,然后做缓存。后面的线程进来发现已经有缓存了,就直接走缓存。

2)超时预判:在value内部设置1个超时值t1, t1比实际的超时时间t2小,当读时发现t1已过期,先加锁延长t1并重新设置到cache, 同时通知查库,查库期间Cache返回旧值,有一个线程从数据库加载数据并设置到cache中. 此后Cache返回新值;

3)预热:先将热数据先加载到缓存系统, 请求直接查询. 后台线程异步同步/定时更新。

缓存雪崩:指当Redis宕机或给所有的缓存设置了同样的过期时间,当某一时刻,整个缓存的数据全部过期了,然后瞬间所有的请求都被抛向了数据库,数据库就崩掉了。

雪崩产生的问题:会造成某一时刻数据库请求量过大,压力剧增。

雪崩解决方案:1)宕机:对缓存集群实现高可用,如果是使用 Redis,可以使用主从+哨兵 ,Redis Cluster 来避免 Redis 全盘崩溃的情况;

2)缓存失效:为了避免这些热点的数据集中失效,那么我们在设置缓存过期时间的时候,我们让他们失效的时间错开。比如在一个基础的时间上加上或者减去一个范围内的随机值。

以上是对应用缓存提升查询接口QPS的方式以及问题处理的总结。

异步化

异步化主要包含两部分,第一部分是分布式系统之间的异步化,主要通过MQ来实现,我们这里使用的阿里云付费版RocketMQ(ONS),在经过压测和评估之后,首先将TPS升级由2W升级至5W,以提高系统的吞吐量。还有就是利用MQ的消峰、异步解耦特性,对于核心业务非必须同步返回结果的接口同步MQ异步优化,这样极大了提高了接口的响应性能。但是在使用MQ时也需要注意一些问题,比如:消息的事务问题、消息顺序问题、消息的防重和幂等一些列的问题。

异步化的第二部分是在单机JVM来进行,比如线程池、程序调用多方接口采用Future模式等。

JVM

这也是本次调优的一个关键点!在首次压测的过程中,压测性能老师反馈存在卡顿的现象,经过排查监控发现是新生代存在频繁的Yong GC且GC时间长达1.5S,这也是导致卡顿产生的原因,老系统的新生代设置的Eden和S1、S2的比例为1:1:1也非常不合理,调优后将比例调整为8:1:1,增加Eden的内存空间。同时Metespace的空间分配也过小,还有就是有些系统竟然没有设置Xms,导致JVM的可用内存非常小,不断发生频繁的Full GC,调优后JVM的可用内存才恢复正常,效果如下图:

JVM使用情况

针对4C8G的机器,在设置JVM参数的时候,建议设置为:

CMS配置参考:-Xms4608M -Xmx4608M -Xmn2048M -XX:PermSize=256M -XX:MaxPermSize=256M -XX:TargetSurvivorRatio=60 -XX:CMSInitiatingOccupancyFraction=75
G1配置参考:-Xms4608M -Xmx4608M -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:+UseStringDeduplication

系统日志

在压测的过程中,发现只要流量一上来,会产生大量的磁盘IO,这期间的接口响应也会变慢,经过分析是打印大量日志和日志中存在大JSON数据导致,于是升级日志打印级别同时将同步日志打印改为异步,系统提升性能效果明显。logback.xml修改如下:

<appender name="RollingFile_Async" class="ch.qos.logback.classic.AsyncAppender" neverBlock="true"><queueSize>8096</queueSize><neverBlock>true</neverBlock><appender-ref ref="RollingFileAppender"/>
</appender><root level="info"><appender-ref ref="RollingFile_Async"/>
</root>

数据库

对于核心业务操作必然涉及到最终到落库操作,数据库优化也是本次调优的重点,主要从一下几个方面进行优化:

  1. 升级数据库配置(DRDS升级配置由32C128G升级至64C256G);
  2. RDS增加从库,数据读写分离,增加查询性能;
  3. 连接池最小连接数由5改成20,最大连接数由60改成200;
  4. 慢SQL优化;
  5. 分页查询。

ES

针对聚合搜索的业务,本次对ES也进行了调优,最主要对目的都是让FileSystem Cache能够缓存更多的数据,我们做了按照年份对数据做了冷热数据分离、数据预热等,具体细节我梳理一下,见下图:

ES优化细节

限流、降级

为了保证系统的高可用,系统必须采取一定的降级和限流手段,防止发生服务雪崩的情况。比如降级,针对一些不重要的展示信息,由于这些信息涉及到关联表查询等,影响系统的整体性能,所以在大促期间将这些不重要的信息进行降级处理。限流主要是针对找过预估的流量按照QPS进行限制。

好的,以上是针对本次大促活动进行的调优整理,希望可以帮助到大家,如果有其他更好的方式也欢迎留言讨论。

不断分享开发过程用到的技术和面试时经常被问到的问题,如果您也对IT技术比较感兴趣可以「关注」我,让我们共同学习,共同进步!

这篇关于大促流量激增,通过什么手段提升系统的高并发、高可用性?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/344829

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

高并发环境中保持幂等性

在高并发环境中保持幂等性是一项重要的挑战。幂等性指的是无论操作执行多少次,其效果都是相同的。确保操作的幂等性可以避免重复执行带来的副作用。以下是一些保持幂等性的常用方法: 唯一标识符: 请求唯一标识:在每次请求中引入唯一标识符(如 UUID 或者生成的唯一 ID),在处理请求时,系统可以检查这个标识符是否已经处理过,如果是,则忽略重复请求。幂等键(Idempotency Key):客户端在每次

poj 2135 有流量限制的最小费用最大流

题意: 农场里有n块地,其中约翰的家在1号地,二n号地有个很大的仓库。 农场有M条道路(双向),道路i连接着ai号地和bi号地,长度为ci。 约翰希望按照从家里出发,经过若干块地后到达仓库,然后再返回家中的顺序带朋友参观。 如果要求往返不能经过同一条路两次,求参观路线总长度的最小值。 解析: 如果只考虑去或者回的情况,问题只不过是无向图中两点之间的最短路问题。 但是现在要去要回