张正友标定方法标定精度评估

2023-11-04 07:48

本文主要是介绍张正友标定方法标定精度评估,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘抄自matlab帮助文件

Evaluating the Accuracy of Single Camera Calibration- MATLAB & Simulink

Overview

Camera calibration is the process of estimating parameters of the camera using images of a special calibration pattern. The parameters include camera intrinsics, distortion coefficients, and camera extrinsics. Once you calibrate a camera, there are several ways to evaluate the accuracy of the estimated parameters:

  • Plot the relative locations of the camera and the calibration pattern

  • Calculate the reprojection errors

  • Calculate the parameter estimation errors

Calibrate the Camera

Estimate camera parameters using a set of images of a checkerboard calibration pattern.

% Create a set of calibration images.
images = imageDatastore(fullfile(toolboxdir('vision'), 'visiondata', ...'calibration', 'fishEye'));
imageFileNames = images.Files;% Detect calibration pattern.
[imagePoints, boardSize] = detectCheckerboardPoints(imageFileNames);% Generate world coordinates of the corners of the squares.
squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize, squareSize);% Calibrate the camera.
[params, ~, estimationErrors] = estimateCameraParameters(imagePoints, worldPoints);

Extrinsics

You can quickly discover obvious errors in your calibration by plotting relative locations of the camera and the calibration pattern. Use the showExtrinsics function to either plot the locations of the calibration pattern in the camera's coordinate system, or the locations of the camera in the pattern's coordinate system. Look for obvious problems, such as the pattern being behind the camera, or the camera being behind the pattern. Also check if a pattern is too far or too close to the camera.

figure;
showExtrinsics(params, 'CameraCentric');
figure;
showExtrinsics(params, 'PatternCentric');

Reprojection Errors

Reprojection errors provide a qualitative measure of accuracy. A reprojection error is the distance between a pattern keypoint detected in a calibration image, and a corresponding world point projected into the same image. TheshowReprojectionErrors function provides a useful visualization of the average reprojection error in each calibration image. If the overall mean reprojection error is too high, consider excluding the images with the highest error and recalibrating.

figure;
showReprojectionErrors(params);

Estimation Errors

Estimation errors represent the uncertainty of each estimated parameter. The estimateCameraParameters function optionally returns estimationErrors output, containing the standard error corresponding to each estimated camera parameter. The returned standard error  (in the same units as the corresponding parameter) can be used to calculate confidence intervals. For example +/-  corresponds to the 95% confidence interval. In other words, the probability that the actual value of a given parameter is within  of its estimate is 95%.

displayErrors(estimationErrors, params);
			Standard Errors of Estimated Camera Parameters----------------------------------------------Intrinsics
----------
Focal length (pixels):   [  714.1881 +/- 3.3220      710.3793 +/- 4.0580  ]
Principal point (pixels):[  563.6511 +/- 5.3966      355.7271 +/- 3.3039  ]
Radial distortion:       [   -0.3535 +/- 0.0091        0.1728 +/- 0.0488  ]Extrinsics
----------
Rotation vectors:[   -0.6096 +/- 0.0054       -0.1789 +/- 0.0073       -0.3835 +/- 0.0024  ][   -0.7283 +/- 0.0050       -0.0996 +/- 0.0072        0.1964 +/- 0.0027  ][   -0.6722 +/- 0.0051       -0.1444 +/- 0.0074       -0.1329 +/- 0.0026  ][   -0.5836 +/- 0.0056       -0.2901 +/- 0.0074       -0.5622 +/- 0.0025  ][   -0.3157 +/- 0.0065       -0.1441 +/- 0.0075       -0.1067 +/- 0.0011  ][   -0.7581 +/- 0.0052        0.1947 +/- 0.0072        0.4324 +/- 0.0030  ][   -0.7515 +/- 0.0051        0.0767 +/- 0.0072        0.2070 +/- 0.0029  ][   -0.6223 +/- 0.0053        0.0231 +/- 0.0073        0.3663 +/- 0.0024  ][    0.3443 +/- 0.0063       -0.2226 +/- 0.0073       -0.0437 +/- 0.0014  ]Translation vectors (mm):[ -146.0550 +/- 6.0391      -26.8706 +/- 3.7321      797.9021 +/- 3.9002  ][ -209.4397 +/- 6.9636      -59.4589 +/- 4.3581      921.8201 +/- 4.6295  ][ -129.3864 +/- 7.0906      -44.1054 +/- 4.3754      937.6825 +/- 4.4914  ][ -151.0086 +/- 6.6904      -27.3276 +/- 4.1343      884.2782 +/- 4.3926  ][ -174.9537 +/- 6.7056      -24.3522 +/- 4.1609      886.4963 +/- 4.6686  ][ -134.3140 +/- 7.8887     -103.5007 +/- 4.8928     1042.4549 +/- 4.8185  ][ -173.9888 +/- 7.6890      -73.1717 +/- 4.7816     1017.2382 +/- 4.8126  ][ -202.9489 +/- 7.4327      -87.9116 +/- 4.6485      983.6961 +/- 4.9072  ][ -319.8898 +/- 6.3213     -119.8920 +/- 4.0925      829.4588 +/- 4.9590  ]

Interpreting Principal Point Estimation Error

The principal point is the optical center of the camera, the point where the optical axis intersects the image plane. You can easily visualize and interpret the standard error of the estimated principal point. Plot an ellipse around the estimated principal point , whose radii are equal to 1.96 times the corresponding estimation errors. The ellipse represents the uncertainty region, which contains the actual principal point with 95% probability.

principalPoint = params.PrincipalPoint;
principalPointError = estimationErrors.IntrinsicsErrors.PrincipalPointError;fig = figure;
ax = axes('Parent', fig);
imshow(imageFileNames{1}, 'InitialMagnification', 60, 'Parent', ax);
hold(ax, 'on');% Plot the principal point.
plot(principalPoint(1), principalPoint(2), 'g+', 'Parent', ax);% Plot the ellipse representing the 95% confidence region.
halfRectSize = 1.96 * principalPointError;
rectangle('Position', [principalPoint-halfRectSize, 2 * halfRectSize], ...'Curvature', [1,1], 'EdgeColor', 'green', 'Parent', ax);legend('Estimated principal point');
title('Principal Point Uncertainty');
hold(ax, 'off');

Interpreting Translation Vectors Estimation Errors

You can also visualize the standard errors of the translation vectors. Each translation vector represents the translation from the pattern's coordinate system into the camera's coordinate system. Equivalently, each translation vector represents the location of the pattern's origin in the camera's coordinate system. You can plot the estimation errors of the translation vectors as ellipsoids representing uncertainty volumes for each pattern's location at 95% confidence level.

% Get translation vectors and corresponding errors.
vectors = params.TranslationVectors;
errors = 1.96 * estimationErrors.ExtrinsicsErrors.TranslationVectorsError;% Set up the figure.
fig = figure;
ax = axes('Parent', fig, 'CameraViewAngle', 5, 'CameraUpVector', [0, -1, 0], ...'CameraPosition', [-1500, -1000, -6000]);
hold on% Plot camera location.
plotCamera('Size', 40, 'AxesVisible', true);% Plot an ellipsoid showing 95% confidence volume of uncertainty of
% location of each checkerboard origin.
labelOffset = 10;
for i = 1:params.NumPatternsellipsoid(vectors(i,1), vectors(i,2), vectors(i,3), ...errors(i,1), errors(i,2), errors(i,3), 5)text(vectors(i,1) + labelOffset, vectors(i,2) + labelOffset, ...vectors(i,3) + labelOffset, num2str(i), ...'fontsize', 12, 'Color', 'r');
end
colormap('hot');
hold off% Set view properties.
xlim([-400, 200]);
zlim([-100, 1100]);xlabel('X (mm)');
ylabel('Y (mm)');
zlabel('Z (mm)');grid on
axis 'equal'
cameratoolbar('Show');
cameratoolbar('SetMode', 'orbit');
cameratoolbar('SetCoordSys', 'Y');
title('Translation Vectors Uncertainty');

How to Improve Calibration Accuracy

Whether or not a particular reprojection or estimation error is acceptable depends on the precision requirements of your particular application. However, if you have determined that your calibration accuracy is unacceptable, there are several ways to improve it:

  • Modify calibration settings. Try using 3 radial distortion coefficients, estimating tangential distortion, or the skew.

  • Take more calibration images. The pattern in the images must be in different 3D orientations, and it should be positioned such that you have keypoints in all parts of the field of view. In particular, it is very important to have keypoints close to the edges and the corners of the image in order to get a better estimate of the distortion coefficients.

  • Exclude images that have high reprojection errors and re-calibrate.

Summary

This example showed how to interpret camera calibration errors.

这篇关于张正友标定方法标定精度评估的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/344299

相关文章

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复