张正友标定方法标定精度评估

2023-11-04 07:48

本文主要是介绍张正友标定方法标定精度评估,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘抄自matlab帮助文件

Evaluating the Accuracy of Single Camera Calibration- MATLAB & Simulink

Overview

Camera calibration is the process of estimating parameters of the camera using images of a special calibration pattern. The parameters include camera intrinsics, distortion coefficients, and camera extrinsics. Once you calibrate a camera, there are several ways to evaluate the accuracy of the estimated parameters:

  • Plot the relative locations of the camera and the calibration pattern

  • Calculate the reprojection errors

  • Calculate the parameter estimation errors

Calibrate the Camera

Estimate camera parameters using a set of images of a checkerboard calibration pattern.

% Create a set of calibration images.
images = imageDatastore(fullfile(toolboxdir('vision'), 'visiondata', ...'calibration', 'fishEye'));
imageFileNames = images.Files;% Detect calibration pattern.
[imagePoints, boardSize] = detectCheckerboardPoints(imageFileNames);% Generate world coordinates of the corners of the squares.
squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize, squareSize);% Calibrate the camera.
[params, ~, estimationErrors] = estimateCameraParameters(imagePoints, worldPoints);

Extrinsics

You can quickly discover obvious errors in your calibration by plotting relative locations of the camera and the calibration pattern. Use the showExtrinsics function to either plot the locations of the calibration pattern in the camera's coordinate system, or the locations of the camera in the pattern's coordinate system. Look for obvious problems, such as the pattern being behind the camera, or the camera being behind the pattern. Also check if a pattern is too far or too close to the camera.

figure;
showExtrinsics(params, 'CameraCentric');
figure;
showExtrinsics(params, 'PatternCentric');

Reprojection Errors

Reprojection errors provide a qualitative measure of accuracy. A reprojection error is the distance between a pattern keypoint detected in a calibration image, and a corresponding world point projected into the same image. TheshowReprojectionErrors function provides a useful visualization of the average reprojection error in each calibration image. If the overall mean reprojection error is too high, consider excluding the images with the highest error and recalibrating.

figure;
showReprojectionErrors(params);

Estimation Errors

Estimation errors represent the uncertainty of each estimated parameter. The estimateCameraParameters function optionally returns estimationErrors output, containing the standard error corresponding to each estimated camera parameter. The returned standard error  (in the same units as the corresponding parameter) can be used to calculate confidence intervals. For example +/-  corresponds to the 95% confidence interval. In other words, the probability that the actual value of a given parameter is within  of its estimate is 95%.

displayErrors(estimationErrors, params);
			Standard Errors of Estimated Camera Parameters----------------------------------------------Intrinsics
----------
Focal length (pixels):   [  714.1881 +/- 3.3220      710.3793 +/- 4.0580  ]
Principal point (pixels):[  563.6511 +/- 5.3966      355.7271 +/- 3.3039  ]
Radial distortion:       [   -0.3535 +/- 0.0091        0.1728 +/- 0.0488  ]Extrinsics
----------
Rotation vectors:[   -0.6096 +/- 0.0054       -0.1789 +/- 0.0073       -0.3835 +/- 0.0024  ][   -0.7283 +/- 0.0050       -0.0996 +/- 0.0072        0.1964 +/- 0.0027  ][   -0.6722 +/- 0.0051       -0.1444 +/- 0.0074       -0.1329 +/- 0.0026  ][   -0.5836 +/- 0.0056       -0.2901 +/- 0.0074       -0.5622 +/- 0.0025  ][   -0.3157 +/- 0.0065       -0.1441 +/- 0.0075       -0.1067 +/- 0.0011  ][   -0.7581 +/- 0.0052        0.1947 +/- 0.0072        0.4324 +/- 0.0030  ][   -0.7515 +/- 0.0051        0.0767 +/- 0.0072        0.2070 +/- 0.0029  ][   -0.6223 +/- 0.0053        0.0231 +/- 0.0073        0.3663 +/- 0.0024  ][    0.3443 +/- 0.0063       -0.2226 +/- 0.0073       -0.0437 +/- 0.0014  ]Translation vectors (mm):[ -146.0550 +/- 6.0391      -26.8706 +/- 3.7321      797.9021 +/- 3.9002  ][ -209.4397 +/- 6.9636      -59.4589 +/- 4.3581      921.8201 +/- 4.6295  ][ -129.3864 +/- 7.0906      -44.1054 +/- 4.3754      937.6825 +/- 4.4914  ][ -151.0086 +/- 6.6904      -27.3276 +/- 4.1343      884.2782 +/- 4.3926  ][ -174.9537 +/- 6.7056      -24.3522 +/- 4.1609      886.4963 +/- 4.6686  ][ -134.3140 +/- 7.8887     -103.5007 +/- 4.8928     1042.4549 +/- 4.8185  ][ -173.9888 +/- 7.6890      -73.1717 +/- 4.7816     1017.2382 +/- 4.8126  ][ -202.9489 +/- 7.4327      -87.9116 +/- 4.6485      983.6961 +/- 4.9072  ][ -319.8898 +/- 6.3213     -119.8920 +/- 4.0925      829.4588 +/- 4.9590  ]

Interpreting Principal Point Estimation Error

The principal point is the optical center of the camera, the point where the optical axis intersects the image plane. You can easily visualize and interpret the standard error of the estimated principal point. Plot an ellipse around the estimated principal point , whose radii are equal to 1.96 times the corresponding estimation errors. The ellipse represents the uncertainty region, which contains the actual principal point with 95% probability.

principalPoint = params.PrincipalPoint;
principalPointError = estimationErrors.IntrinsicsErrors.PrincipalPointError;fig = figure;
ax = axes('Parent', fig);
imshow(imageFileNames{1}, 'InitialMagnification', 60, 'Parent', ax);
hold(ax, 'on');% Plot the principal point.
plot(principalPoint(1), principalPoint(2), 'g+', 'Parent', ax);% Plot the ellipse representing the 95% confidence region.
halfRectSize = 1.96 * principalPointError;
rectangle('Position', [principalPoint-halfRectSize, 2 * halfRectSize], ...'Curvature', [1,1], 'EdgeColor', 'green', 'Parent', ax);legend('Estimated principal point');
title('Principal Point Uncertainty');
hold(ax, 'off');

Interpreting Translation Vectors Estimation Errors

You can also visualize the standard errors of the translation vectors. Each translation vector represents the translation from the pattern's coordinate system into the camera's coordinate system. Equivalently, each translation vector represents the location of the pattern's origin in the camera's coordinate system. You can plot the estimation errors of the translation vectors as ellipsoids representing uncertainty volumes for each pattern's location at 95% confidence level.

% Get translation vectors and corresponding errors.
vectors = params.TranslationVectors;
errors = 1.96 * estimationErrors.ExtrinsicsErrors.TranslationVectorsError;% Set up the figure.
fig = figure;
ax = axes('Parent', fig, 'CameraViewAngle', 5, 'CameraUpVector', [0, -1, 0], ...'CameraPosition', [-1500, -1000, -6000]);
hold on% Plot camera location.
plotCamera('Size', 40, 'AxesVisible', true);% Plot an ellipsoid showing 95% confidence volume of uncertainty of
% location of each checkerboard origin.
labelOffset = 10;
for i = 1:params.NumPatternsellipsoid(vectors(i,1), vectors(i,2), vectors(i,3), ...errors(i,1), errors(i,2), errors(i,3), 5)text(vectors(i,1) + labelOffset, vectors(i,2) + labelOffset, ...vectors(i,3) + labelOffset, num2str(i), ...'fontsize', 12, 'Color', 'r');
end
colormap('hot');
hold off% Set view properties.
xlim([-400, 200]);
zlim([-100, 1100]);xlabel('X (mm)');
ylabel('Y (mm)');
zlabel('Z (mm)');grid on
axis 'equal'
cameratoolbar('Show');
cameratoolbar('SetMode', 'orbit');
cameratoolbar('SetCoordSys', 'Y');
title('Translation Vectors Uncertainty');

How to Improve Calibration Accuracy

Whether or not a particular reprojection or estimation error is acceptable depends on the precision requirements of your particular application. However, if you have determined that your calibration accuracy is unacceptable, there are several ways to improve it:

  • Modify calibration settings. Try using 3 radial distortion coefficients, estimating tangential distortion, or the skew.

  • Take more calibration images. The pattern in the images must be in different 3D orientations, and it should be positioned such that you have keypoints in all parts of the field of view. In particular, it is very important to have keypoints close to the edges and the corners of the image in order to get a better estimate of the distortion coefficients.

  • Exclude images that have high reprojection errors and re-calibrate.

Summary

This example showed how to interpret camera calibration errors.

这篇关于张正友标定方法标定精度评估的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/344299

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE