张正友标定方法标定精度评估

2023-11-04 07:48

本文主要是介绍张正友标定方法标定精度评估,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘抄自matlab帮助文件

Evaluating the Accuracy of Single Camera Calibration- MATLAB & Simulink

Overview

Camera calibration is the process of estimating parameters of the camera using images of a special calibration pattern. The parameters include camera intrinsics, distortion coefficients, and camera extrinsics. Once you calibrate a camera, there are several ways to evaluate the accuracy of the estimated parameters:

  • Plot the relative locations of the camera and the calibration pattern

  • Calculate the reprojection errors

  • Calculate the parameter estimation errors

Calibrate the Camera

Estimate camera parameters using a set of images of a checkerboard calibration pattern.

% Create a set of calibration images.
images = imageDatastore(fullfile(toolboxdir('vision'), 'visiondata', ...'calibration', 'fishEye'));
imageFileNames = images.Files;% Detect calibration pattern.
[imagePoints, boardSize] = detectCheckerboardPoints(imageFileNames);% Generate world coordinates of the corners of the squares.
squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize, squareSize);% Calibrate the camera.
[params, ~, estimationErrors] = estimateCameraParameters(imagePoints, worldPoints);

Extrinsics

You can quickly discover obvious errors in your calibration by plotting relative locations of the camera and the calibration pattern. Use the showExtrinsics function to either plot the locations of the calibration pattern in the camera's coordinate system, or the locations of the camera in the pattern's coordinate system. Look for obvious problems, such as the pattern being behind the camera, or the camera being behind the pattern. Also check if a pattern is too far or too close to the camera.

figure;
showExtrinsics(params, 'CameraCentric');
figure;
showExtrinsics(params, 'PatternCentric');

Reprojection Errors

Reprojection errors provide a qualitative measure of accuracy. A reprojection error is the distance between a pattern keypoint detected in a calibration image, and a corresponding world point projected into the same image. TheshowReprojectionErrors function provides a useful visualization of the average reprojection error in each calibration image. If the overall mean reprojection error is too high, consider excluding the images with the highest error and recalibrating.

figure;
showReprojectionErrors(params);

Estimation Errors

Estimation errors represent the uncertainty of each estimated parameter. The estimateCameraParameters function optionally returns estimationErrors output, containing the standard error corresponding to each estimated camera parameter. The returned standard error  (in the same units as the corresponding parameter) can be used to calculate confidence intervals. For example +/-  corresponds to the 95% confidence interval. In other words, the probability that the actual value of a given parameter is within  of its estimate is 95%.

displayErrors(estimationErrors, params);
			Standard Errors of Estimated Camera Parameters----------------------------------------------Intrinsics
----------
Focal length (pixels):   [  714.1881 +/- 3.3220      710.3793 +/- 4.0580  ]
Principal point (pixels):[  563.6511 +/- 5.3966      355.7271 +/- 3.3039  ]
Radial distortion:       [   -0.3535 +/- 0.0091        0.1728 +/- 0.0488  ]Extrinsics
----------
Rotation vectors:[   -0.6096 +/- 0.0054       -0.1789 +/- 0.0073       -0.3835 +/- 0.0024  ][   -0.7283 +/- 0.0050       -0.0996 +/- 0.0072        0.1964 +/- 0.0027  ][   -0.6722 +/- 0.0051       -0.1444 +/- 0.0074       -0.1329 +/- 0.0026  ][   -0.5836 +/- 0.0056       -0.2901 +/- 0.0074       -0.5622 +/- 0.0025  ][   -0.3157 +/- 0.0065       -0.1441 +/- 0.0075       -0.1067 +/- 0.0011  ][   -0.7581 +/- 0.0052        0.1947 +/- 0.0072        0.4324 +/- 0.0030  ][   -0.7515 +/- 0.0051        0.0767 +/- 0.0072        0.2070 +/- 0.0029  ][   -0.6223 +/- 0.0053        0.0231 +/- 0.0073        0.3663 +/- 0.0024  ][    0.3443 +/- 0.0063       -0.2226 +/- 0.0073       -0.0437 +/- 0.0014  ]Translation vectors (mm):[ -146.0550 +/- 6.0391      -26.8706 +/- 3.7321      797.9021 +/- 3.9002  ][ -209.4397 +/- 6.9636      -59.4589 +/- 4.3581      921.8201 +/- 4.6295  ][ -129.3864 +/- 7.0906      -44.1054 +/- 4.3754      937.6825 +/- 4.4914  ][ -151.0086 +/- 6.6904      -27.3276 +/- 4.1343      884.2782 +/- 4.3926  ][ -174.9537 +/- 6.7056      -24.3522 +/- 4.1609      886.4963 +/- 4.6686  ][ -134.3140 +/- 7.8887     -103.5007 +/- 4.8928     1042.4549 +/- 4.8185  ][ -173.9888 +/- 7.6890      -73.1717 +/- 4.7816     1017.2382 +/- 4.8126  ][ -202.9489 +/- 7.4327      -87.9116 +/- 4.6485      983.6961 +/- 4.9072  ][ -319.8898 +/- 6.3213     -119.8920 +/- 4.0925      829.4588 +/- 4.9590  ]

Interpreting Principal Point Estimation Error

The principal point is the optical center of the camera, the point where the optical axis intersects the image plane. You can easily visualize and interpret the standard error of the estimated principal point. Plot an ellipse around the estimated principal point , whose radii are equal to 1.96 times the corresponding estimation errors. The ellipse represents the uncertainty region, which contains the actual principal point with 95% probability.

principalPoint = params.PrincipalPoint;
principalPointError = estimationErrors.IntrinsicsErrors.PrincipalPointError;fig = figure;
ax = axes('Parent', fig);
imshow(imageFileNames{1}, 'InitialMagnification', 60, 'Parent', ax);
hold(ax, 'on');% Plot the principal point.
plot(principalPoint(1), principalPoint(2), 'g+', 'Parent', ax);% Plot the ellipse representing the 95% confidence region.
halfRectSize = 1.96 * principalPointError;
rectangle('Position', [principalPoint-halfRectSize, 2 * halfRectSize], ...'Curvature', [1,1], 'EdgeColor', 'green', 'Parent', ax);legend('Estimated principal point');
title('Principal Point Uncertainty');
hold(ax, 'off');

Interpreting Translation Vectors Estimation Errors

You can also visualize the standard errors of the translation vectors. Each translation vector represents the translation from the pattern's coordinate system into the camera's coordinate system. Equivalently, each translation vector represents the location of the pattern's origin in the camera's coordinate system. You can plot the estimation errors of the translation vectors as ellipsoids representing uncertainty volumes for each pattern's location at 95% confidence level.

% Get translation vectors and corresponding errors.
vectors = params.TranslationVectors;
errors = 1.96 * estimationErrors.ExtrinsicsErrors.TranslationVectorsError;% Set up the figure.
fig = figure;
ax = axes('Parent', fig, 'CameraViewAngle', 5, 'CameraUpVector', [0, -1, 0], ...'CameraPosition', [-1500, -1000, -6000]);
hold on% Plot camera location.
plotCamera('Size', 40, 'AxesVisible', true);% Plot an ellipsoid showing 95% confidence volume of uncertainty of
% location of each checkerboard origin.
labelOffset = 10;
for i = 1:params.NumPatternsellipsoid(vectors(i,1), vectors(i,2), vectors(i,3), ...errors(i,1), errors(i,2), errors(i,3), 5)text(vectors(i,1) + labelOffset, vectors(i,2) + labelOffset, ...vectors(i,3) + labelOffset, num2str(i), ...'fontsize', 12, 'Color', 'r');
end
colormap('hot');
hold off% Set view properties.
xlim([-400, 200]);
zlim([-100, 1100]);xlabel('X (mm)');
ylabel('Y (mm)');
zlabel('Z (mm)');grid on
axis 'equal'
cameratoolbar('Show');
cameratoolbar('SetMode', 'orbit');
cameratoolbar('SetCoordSys', 'Y');
title('Translation Vectors Uncertainty');

How to Improve Calibration Accuracy

Whether or not a particular reprojection or estimation error is acceptable depends on the precision requirements of your particular application. However, if you have determined that your calibration accuracy is unacceptable, there are several ways to improve it:

  • Modify calibration settings. Try using 3 radial distortion coefficients, estimating tangential distortion, or the skew.

  • Take more calibration images. The pattern in the images must be in different 3D orientations, and it should be positioned such that you have keypoints in all parts of the field of view. In particular, it is very important to have keypoints close to the edges and the corners of the image in order to get a better estimate of the distortion coefficients.

  • Exclude images that have high reprojection errors and re-calibrate.

Summary

This example showed how to interpret camera calibration errors.

这篇关于张正友标定方法标定精度评估的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/344299

相关文章

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Apache Tomcat服务器版本号隐藏的几种方法

《ApacheTomcat服务器版本号隐藏的几种方法》本文主要介绍了ApacheTomcat服务器版本号隐藏的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1. 隐藏HTTP响应头中的Server信息编辑 server.XML 文件2. 修China编程改错误

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

JavaScript DOM操作与事件处理方法

《JavaScriptDOM操作与事件处理方法》本文通过一系列代码片段,详细介绍了如何使用JavaScript进行DOM操作、事件处理、属性操作、内容操作、尺寸和位置获取,以及实现简单的动画效果,涵... 目录前言1. 类名操作代码片段代码解析2. 属性操作代码片段代码解析3. 内容操作代码片段代码解析4.

SpringBoot3集成swagger文档的使用方法

《SpringBoot3集成swagger文档的使用方法》本文介绍了Swagger的诞生背景、主要功能以及如何在SpringBoot3中集成Swagger文档,Swagger可以帮助自动生成API文档... 目录一、前言1. API 文档自动生成2. 交互式 API 测试3. API 设计和开发协作二、使用