【OpenPCDet】稀疏卷积SPConv-v1.2代码解读(2)

2023-11-04 01:59

本文主要是介绍【OpenPCDet】稀疏卷积SPConv-v1.2代码解读(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【SPConv模块Python部分代码】

        在上一篇文章里分别展示了spconv源码中的Python和c++/cuda目录,这里再来看一下spconv编译安装完后的目录结构。

(openpcd) ➜  spconv tree -L 1
.
├── conv.py
├── functional.py
├── identity.py
├── __init__.py
├── libcuhash.so
├── libspconv.so
├── modules.py
├── ops.py
├── pool.py
├── __pycache__
├── spconv_utils.cpython-36m-x86_64-linux-gnu.so
├── spconv_utils.cpython-36m-x86_64-linux-gnu.so.1
├── spconv_utils.cpython-36m-x86_64-linux-gnu.so.1.1
├── tables.py
├── test_utils.py
└── utils

当我们 在Second代码中import spconv就是在导入安装好的spconv package。既然是package,那就必然有__init__.py 文件,别且在导入spconv时__init__.py中的可执行代码会被执行。pcdet/models/backbones_3d/spconv_backbone.py文件中,在导入完spconv后,可以直接使用spconv.SubMConv3d,spconv.SparseConv3d,spconv.SparseConvTensor,spconv.SparseSequential等子模块也是因为spconv的__init__.py代码中已经将它们一一导入了进来。

rom spconv import ops, utils
from spconv.conv import (SparseConv2d, SparseConv3d, SparseConvTranspose2d,SparseConvTranspose3d, SparseInverseConv2d,SparseInverseConv3d, SubMConv2d, SubMConv3d)
from spconv.identity import Identity
from spconv.modules import SparseModule, SparseSequential
from spconv.ops import ConvAlgo
from spconv.pool import SparseMaxPool2d, SparseMaxPool3d
from spconv.tables import AddTable, ConcatTable, JoinTable_LIB_FILE_NAME = "libspconv.so"
if platform.system() == "Windows":_LIB_FILE_NAME = "spconv.dll"
_LIB_PATH = str(Path(__file__).parent / _LIB_FILE_NAME)
torch.ops.load_library(_LIB_PATH)

而其中需要用c++/cuda实现的操作,在spconv编译安装的时候会编译成共享库,在这里通过torch.ops.load_library来加载。从而轻松实现python代码调用c++/cuda实现的操作。__init__.py中同时定义了稀疏卷积的核心数据结构SparseConvTensor。当然,虽然它名字叫

class SparseConvTensor(object):def __init__(self, features, indices, spatial_shape, batch_size,grid=None):"""Args:features: [num_points, num_features] feature tensorindices: [num_points, ndim + 1] indice tensor. batch index saved in indices[:, 0]spatial_shape: spatial shape of your sparse databatch_size: batch size of your sparse datagrid: pre-allocated grid tensor. should be used when the volume of spatial shapeis very large."""self.features = features             #e.g. torch.size([16000,4])self.indices = indices               #e.g. torch.size([16000,4])self.spatial_shape = spatial_shape   #e.g. array([41,1600,1408])self.batch_size = batch_sizeself.indice_dict = {}self.grid = grid@classmethoddef from_dense(cls, x: torch.Tensor):"""create sparse tensor fron channel last dense tensor by to_sparsex must be NHWC tensor, channel last"""x = x.to_sparse(x.ndim - 1)spatial_shape = x.shape[1:-1]batch_size = x.shape[0]indices_th = x.indices().permute(1, 0).contiguous().int()features_th = x.values()return cls(features_th, indices_th, spatial_shape, batch_size)@propertydef spatial_size(self):return np.prod(self.spatial_shape)def find_indice_pair(self, key):if key is None:return Noneif key in self.indice_dict:return self.indice_dict[key]return Nonedef dense(self, channels_first=True):output_shape = [self.batch_size] + list(self.spatial_shape) + [self.features.shape[1]]res = scatter_nd(self.indices.to(self.features.device).long(), self.features,output_shape)if not channels_first:return resndim = len(self.spatial_shape)trans_params = list(range(0, ndim + 1))trans_params.insert(1, ndim + 1)return res.permute(*trans_params).contiguous()@propertydef sparity(self):return self.indices.shape[0] / np.prod(self.spatial_shape) / self.batch_size

SparseConvTensor,但是本身并不是一个torch tensor,只是对稀疏Tensor的一个抽象。其内部成员features,indices和spatial_shape分别表示有效的数据,有效数据的索引以及空间大小。以Second中VoxelBackBone8x第一层的输入为例。假定如下配置参数设定:

POINT_CLOUD_RANGE: [0, -40, -3, 70.4, 40, 1]
VOXEL_SIZE: [0.05, 0.05, 0.1]
MAX_POINTS_PER_VOXEL: 5
MAX_NUMBER_OF_VOXELS: {'train': 40000,'test': 40000
}
BATCH_SIZE_PER_GPU: 2

features和indices 的shape为[N,4]。其中N表示当前batch下2帧点云总的有效的(active)voxel数量。spatial_shape经过POINT_CLOUD_RANGE和VOXEL_SIZE计算后的值为[41,1600,1408]。3D稀疏标准稀疏卷积和3D子流行稀疏卷积分别有SparseConv3d和SparseMConv3d两个类定义。这两个类都派生自SparseConvolution。其输入参数subm用于区分是标准3d稀疏卷积还是3d子流行稀疏卷积。

class SparseConvolution(SparseModule):__constants__ = ['stride', 'padding', 'dilation', 'groups', 'bias', 'subm', 'inverse','transposed', 'output_padding', 'fused_bn']def __init__(self,ndim,in_channels,out_channels,kernel_size=3,stride=1,padding=0,dilation=1,groups=1,bias=True,subm=False,output_padding=0,transposed=False,inverse=False,indice_key=None,fused_bn=False,use_hash=False,algo=ops.ConvAlgo.Native):super(SparseConvolution, self).__init__()assert groups == 1if not isinstance(kernel_size, (list, tuple)):kernel_size = [kernel_size] * ndimif not isinstance(stride, (list, tuple)):stride = [stride] * ndimif not isinstance(padding, (list, tuple)):padding = [padding] * ndimif not isinstance(dilation, (list, tuple)):dilation = [dilation] * ndimif not isinstance(output_padding, (list, tuple)):output_padding = [output_padding] * ndimfor d, s in zip(dilation, stride):assert any([s == 1, d == 1]), "don't support this."self.ndim = ndim                                     #2d,3d,4d,....self.in_channels = in_channelsself.out_channels = out_channelsself.kernel_size = kernel_sizeself.conv1x1 = np.prod(kernel_size) == 1self.stride = strideself.padding = paddingself.dilation = dilationself.transposed = transposedself.inverse = inverseself.output_padding = output_paddingself.groups = groupsself.subm = submself.indice_key = indice_keyself.fused_bn = fused_bnself.use_hash = use_hashself.algo = algo.value      #what?self.weight = Parameter(torch.Tensor(*kernel_size, in_channels, out_channels))if bias:self.bias = Parameter(torch.Tensor(out_channels))else:self.register_parameter('bias', None)self.reset_parameters()def reset_parameters(self):n = self.in_channelsinit.kaiming_uniform_(self.weight, a=math.sqrt(5))if self.bias is not None:fan_in, _ = _calculate_fan_in_and_fan_out_hwio(self.weight)bound = 1 / math.sqrt(fan_in)init.uniform_(self.bias, -bound, bound)def forward(self, input):assert isinstance(input, spconv.SparseConvTensor)features = input.features #e.g. torch.Size[N,4]device = features.device#有效特征的coord idx,[batch_idx, z_idx, y_idx, x_idx]indices = input.indices   #e.g. torch.Size[N,4]  spatial_shape = input.spatial_shape   #e.g. array([41,1600,1408])batch_size = input.batch_sizeif not self.subm:if self.transposed:#...else:#获取输出卷积的形状e.g. (41,1600,1408) -> (21,800,704)out_spatial_shape = ops.get_conv_output_size(spatial_shape, self.kernel_size, self.stride, self.padding,self.dilation)else:out_spatial_shape = spatial_shape#单独处理1x1卷积if self.conv1x1:features = torch.mm(input.features,self.weight.view(self.in_channels, self.out_channels))if self.bias is not None:features += self.biasout_tensor = spconv.SparseConvTensor(features, input.indices,input.spatial_shape,input.batch_size)out_tensor.indice_dict = input.indice_dictout_tensor.grid = input.gridreturn out_tensordatas = input.find_indice_pair(self.indice_key)if self.inverse:assert datas is not None and self.indice_key is not None_, outids, indice_pairs, indice_pair_num, out_spatial_shape = datasassert indice_pair_num.shape[0] == np.prod(self.kernel_size), "inverse conv must have same kernel size as its couple conv"else:if self.indice_key is not None and datas is not None:outids, _, indice_pairs, indice_pair_num, _ = dataselse:outids, indice_pairs, indice_pair_num = ops.get_indice_pairs(indices,batch_size,spatial_shape,self.kernel_size,self.stride,self.padding,self.dilation,self.output_padding,self.subm,self.transposed,grid=input.grid,use_hash=self.use_hash)input.indice_dict[self.indice_key] = (outids, indices,indice_pairs,indice_pair_num,spatial_shape)if self.fused_bn:assert self.bias is not Noneout_features = ops.fused_indice_conv(features, self.weight,self.bias,indice_pairs.to(device),indice_pair_num,outids.shape[0], self.inverse,self.subm)else:if self.subm:out_features = Fsp.indice_subm_conv(features, self.weight,indice_pairs.to(device),indice_pair_num,outids.shape[0], self.algo)else:if self.inverse:out_features = Fsp.indice_inverse_conv(features, self.weight, indice_pairs.to(device),indice_pair_num, outids.shape[0], self.algo)else:out_features = Fsp.indice_conv(features, self.weight,indice_pairs.to(device),indice_pair_num,outids.shape[0], self.algo)if self.bias is not None:out_features += self.biasout_tensor = spconv.SparseConvTensor(out_features, outids,out_spatial_shape, batch_size)out_tensor.indice_dict = input.indice_dictout_tensor.grid = input.gridreturn out_tensor

为了抓住主要矛盾,示例代码中省略了部分次要代码,或者是在Second网络结构中不会调用的分支。SparseConvolution的forward函数输入必须是一个spconv中自定义的SparseConvTensor类型。在forward中完成稀疏卷积最重要的两个步骤:

Step1:构建Rulebook;

Step2:根据step1构建的Rulebook执行具体稀疏卷积计算;

其中Step1构建Rulebook由ops.get_indice_pairs接口完成,Step2依卷积类型由Fsp.indice_subm_conv或Fsp.indice_conv完成。为什么如此紧密衔接的接口一个在分开在了两个不同的模块ops和fsp中实现呢?其实如果你进一步分析后续代码会发现其实它们殊途同归,Fsp.indice_subm_conv和Fsp.indice_conv经function.py中的SubMConvFunction和SparseConvFunction对象辗转还是会继续调用ops模块中的indice_conv等函数。最终,他们都会以torch.ops.spconv.xx的形式调用c++扩展共享库中的api来完成任务。要数区别,其实这里体现了Pytorch中添加c++扩展的其中两种形式。对于Step1构建Rulebook,它根据输入索引,卷积核大小等参数信息构建Rulebook(规则表),这里直接使用Python调用c++接口。而像Step2是使用torch.autograd.Function进行了一层封装。Function 类本身表示 PyTorch 的一个可导函数,只要为其定义了前向推理和反向传播的实现,我们就可以把它当成一个普通 PyTorch 函数来使用。PyTorch 会自动调度该函数,合适地执行前向和反向计算。对模型部署来说,Function 类有一个很好的性质:如果它定义了 symbolic 静态方法,该 Function 在执行 torch.onnx.export() 时就可以根据 symbolic 中定义的规则转换成 ONNX 算子。这个 symbolic 就是前面提到的符号函数,只是它的名称必须是 symbolic 而已。

import torch
from torch import nn
from torch.autograd import Function
import spconv.ops as ops
class SparseConvFunction(Function):@staticmethoddef forward(ctx, features, filters, indice_pairs, indice_pair_num,num_activate_out, algo):ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters)ctx.algo = algoreturn ops.indice_conv(features,filters,indice_pairs,indice_pair_num,num_activate_out,False,algo=algo)@staticmethoddef backward(ctx, grad_output):indice_pairs, indice_pair_num, features, filters = ctx.saved_tensorsinput_bp, filters_bp = ops.indice_conv_backward(features,filters,grad_output,indice_pairs,indice_pair_num,False,algo=ctx.algo)return input_bp, filters_bp, None, None, None, Noneclass SubMConvFunction(Function):@staticmethoddef forward(ctx, features, filters, indice_pairs, indice_pair_num,num_activate_out, algo):ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters)ctx.algo = algoreturn ops.indice_conv(features,filters,indice_pairs,indice_pair_num,num_activate_out,False,True,algo=algo)@staticmethoddef backward(ctx, grad_output):indice_pairs, indice_pair_num, features, filters = ctx.saved_tensorsinput_bp, filters_bp = ops.indice_conv_backward(features,filters,grad_output,indice_pairs,indice_pair_num,False,True,algo=ctx.algo)return input_bp, filters_bp, None, None, None, None

对于3D稀疏卷积运算这样一个全新的扩展算子,在这里我们不仅要自己实现forward函数,还要实现backward函数。因为在c++端Pytorch目前不支持根据forward函数自动推导出backward函数,所以要必要对新扩展算子的反向传播原理十分清楚。

【附录:Second可以轻易导出onnx吗?】

Pytorch模型转ONNX模型原理

        在把 PyTorch 模型转换成 ONNX 模型时,我们往往只需要轻松地调用一句 torch.onnx.export 就行了。torch.onnx.export 中需要的模型实际上是一个 torch.jit.ScriptModule。而要把普通 PyTorch 模型转一个这样的 TorchScript 模型,有跟踪(trace)和记录(script)两种导出计算图的方法。如果给 torch.onnx.export 传入了一个普通 PyTorch 模型(torch.nn.Module),那么这个模型会默认使用trace(跟踪)的方法导出。这一过程如下图所示:

trace(跟踪法)通过运行一遍模型(这就时为什么我们在export的时候要提供输入),在推理的过程中记录所有经过的计算,将这些记录整合成计算图,导出模型的静态图。也因为如此,跟踪法无法识别出模型中的控制流(如循环),记录法则能通过解析模型来正确记录所有的控制流。

Second转ONNX的问题?

问题1: ops.get_indice_pairs无法识别!

RuntimeError: ONNX export failed on an operator with 
unrecognized namespace spconv::get_indice_pairs. 
If you are trying to export a custom operator, 
make sure you registered it with the right domain and version.

问题2:SparseConFunction中无相关符号函数定义!

【参考文献】

TorchScript 解读(二):Torch jit tracer 实现解析 - 知乎

模型部署入门教程(四):在 PyTorch 中支持更多 ONNX 算子 - 知乎

这可能是关于Pytorch底层算子扩展最详细的总结了! - 知乎

PyTorch扩展自定义PyThon/C++(CUDA)算子的若干方法总结 - 知乎

PyTorch中构建和调用C++/CUDA扩展_NaiveYoungPeo的博客-CSDN博客

这篇关于【OpenPCDet】稀疏卷积SPConv-v1.2代码解读(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/342452

相关文章

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

D4代码AC集

贪心问题解决的步骤: (局部贪心能导致全局贪心)    1.确定贪心策略    2.验证贪心策略是否正确 排队接水 #include<bits/stdc++.h>using namespace std;int main(){int w,n,a[32000];cin>>w>>n;for(int i=1;i<=n;i++){cin>>a[i];}sort(a+1,a+n+1);int i=1

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训