PyTorch 的 Pooling 和 UnPooling函数中的 indices 参数:nn.MaxPool2d/nn.MaxUnpool2d、F.max_pool2d/F.max_unpool2d

本文主要是介绍PyTorch 的 Pooling 和 UnPooling函数中的 indices 参数:nn.MaxPool2d/nn.MaxUnpool2d、F.max_pool2d/F.max_unpool2d,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇博文主要介绍 PyTorch 的 MaxPooling 和 MAxUnPooling 函数中涉及到的 indices 参数。

indices 是“索引”的意思,对于一些结构对称的网络模型,上采样和下采样的结构往往是对称的,我们可以在下采样做 MaxPooling 的时候记录下来最大值所在的位置,当做上采样的时候把最大值还原到其对应的位置,然后其余的位置补 0 。

indices 参数的作用就是保存 MaxPooling 操作时最大值位置的索引。

如下图所示:

在这里插入图片描述
PyTorch 的 torch.nn 和 torch.nn.functional 模块中均有实现 Pooling 和 UnPooling 的 api ,它们的作用和效果是完全相同的。

1、nn.MaxPool2d 和 nn.MaxUnpool2d

使用 nn.MaxPool2d 和 nn.MaxUnpool2d 时要先实例化,事实上 nn 模块下面的函数都是如此(需要先实例化),比如 nn.Conv

import torch
from torch import nn# 使用 nn.MaxPool2d 和 nn.MaxUnpool2d 时要先实例化
pool = nn.MaxPool2d(kernel_size=2, stride=2, return_indices=True)
unpool = nn.MaxUnpool2d(kernel_size=2, stride=2)data = torch.tensor([[[[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12],[13, 14, 15, 16]]]], dtype=torch.float32)
pool_out, indice = pool(data)
unpool_out = unpool(input=pool_out, indices=indice)print("pool_out = ", pool_out)
print("indice = ", indice)
print("unpool_out = ", unpool_out)"""
pool_out =  tensor([[[[ 6.,  8.],[14., 16.]]]])
indice =  tensor([[[[ 5,  7],[13, 15]]]])
unpool_out =  tensor([[[[ 0.,  0.,  0.,  0.],[ 0.,  6.,  0.,  8.],[ 0.,  0.,  0.,  0.],[ 0., 14.,  0., 16.]]]])
"""

2、F.max_pool2d 和 F.max_unpool2d

使用 F.max_pool2d 和 F.max_unpool2d 时不需要实例化,可以直接使用。

import torch
import torch.nn.functional as Fdata = torch.tensor([[[[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12],[13, 14, 15, 16]]]], dtype=torch.float32)
pool_out, indice = F.max_pool2d(input=data, kernel_size=2, stride=2, return_indices=True)
unpool_out = F.max_unpool2d(input=pool_out, indices=indice, kernel_size=2, stride=2)print("pool_out = ", pool_out)
print("indice = ", indice)
print("unpool_out = ", unpool_out)"""
pool_out =  tensor([[[[ 6.,  8.],[14., 16.]]]])
indice =  tensor([[[[ 5,  7],[13, 15]]]])
unpool_out =  tensor([[[[ 0.,  0.,  0.,  0.],[ 0.,  6.,  0.,  8.],[ 0.,  0.,  0.,  0.],[ 0., 14.,  0., 16.]]]])
"""

可以看到,nn.MaxPool2d / nn.MaxUnpool2d 和 F.max_pool2d / F.max_unpool2d 的作用和输出结果完全相同。

3、使用 Pooling 和 Conv2d 实现上/下采样的区别和产生的影响

使用 Pooling 和 Conv2d 实现上/下采样的区别主要体现在对奇数大小的特征图的处理中,以特征图大小为 65*65为例。

使用 nn.MaxPool2d 和 F.max_pool2d 实现下采样时,得到的特征图大小是 32*32,上采样得到的特征图大小是 64*64
使用 nn.Conv2d 实现下采样时,得到的特征图大小是 33*33;再使用nn.ConvTranspose2d 上采样得到的特征图大小是 66*66

在很多对称的网络结构中(如 UNet、SegNet),需要对上采样和下采样的对应的特征图进行大小对齐。

若网络中间某个特征图大小是 65 ,不论使用哪种上/下采样策略,得到的特征图大小必然不可能还是64(不可能是奇数)。此时就要考虑64和66的区别了。

(1)如果使用 64 * 64 大小的特征图,则需要进行 padding 得到 65 * 65 的特征图。但padding操作可能会导致在训练和推理过程中的不确定性问题。

(2)如果使用 66 * 66 大小的特征图,则只需要进行切片得到 65 * 65 的特征图。该操作是更靠谱的。

因此,个人建议使用 nn.Conv2d 和其他函数实现采样操作。

这篇关于PyTorch 的 Pooling 和 UnPooling函数中的 indices 参数:nn.MaxPool2d/nn.MaxUnpool2d、F.max_pool2d/F.max_unpool2d的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/342448

相关文章

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

一文带你了解SpringBoot中启动参数的各种用法

《一文带你了解SpringBoot中启动参数的各种用法》在使用SpringBoot开发应用时,我们通常需要根据不同的环境或特定需求调整启动参数,那么,SpringBoot提供了哪些方式来配置这些启动参... 目录一、启动参数的常见传递方式二、通过命令行参数传递启动参数三、使用 application.pro

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

基于@RequestParam注解之Spring MVC参数绑定的利器

《基于@RequestParam注解之SpringMVC参数绑定的利器》:本文主要介绍基于@RequestParam注解之SpringMVC参数绑定的利器,具有很好的参考价值,希望对大家有所帮助... 目录@RequestParam注解:Spring MVC参数绑定的利器什么是@RequestParam?@

kotlin的函数forEach示例详解

《kotlin的函数forEach示例详解》在Kotlin中,forEach是一个高阶函数,用于遍历集合中的每个元素并对其执行指定的操作,它的核心特点是简洁、函数式,适用于需要遍历集合且无需返回值的场... 目录一、基本用法1️⃣ 遍历集合2️⃣ 遍历数组3️⃣ 遍历 Map二、与 for 循环的区别三、高

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

C语言字符函数和字符串函数示例详解

《C语言字符函数和字符串函数示例详解》本文详细介绍了C语言中字符分类函数、字符转换函数及字符串操作函数的使用方法,并通过示例代码展示了如何实现这些功能,通过这些内容,读者可以深入理解并掌握C语言中的字... 目录一、字符分类函数二、字符转换函数三、strlen的使用和模拟实现3.1strlen函数3.2st