PyTorch 的 Pooling 和 UnPooling函数中的 indices 参数:nn.MaxPool2d/nn.MaxUnpool2d、F.max_pool2d/F.max_unpool2d

本文主要是介绍PyTorch 的 Pooling 和 UnPooling函数中的 indices 参数:nn.MaxPool2d/nn.MaxUnpool2d、F.max_pool2d/F.max_unpool2d,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇博文主要介绍 PyTorch 的 MaxPooling 和 MAxUnPooling 函数中涉及到的 indices 参数。

indices 是“索引”的意思,对于一些结构对称的网络模型,上采样和下采样的结构往往是对称的,我们可以在下采样做 MaxPooling 的时候记录下来最大值所在的位置,当做上采样的时候把最大值还原到其对应的位置,然后其余的位置补 0 。

indices 参数的作用就是保存 MaxPooling 操作时最大值位置的索引。

如下图所示:

在这里插入图片描述
PyTorch 的 torch.nn 和 torch.nn.functional 模块中均有实现 Pooling 和 UnPooling 的 api ,它们的作用和效果是完全相同的。

1、nn.MaxPool2d 和 nn.MaxUnpool2d

使用 nn.MaxPool2d 和 nn.MaxUnpool2d 时要先实例化,事实上 nn 模块下面的函数都是如此(需要先实例化),比如 nn.Conv

import torch
from torch import nn# 使用 nn.MaxPool2d 和 nn.MaxUnpool2d 时要先实例化
pool = nn.MaxPool2d(kernel_size=2, stride=2, return_indices=True)
unpool = nn.MaxUnpool2d(kernel_size=2, stride=2)data = torch.tensor([[[[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12],[13, 14, 15, 16]]]], dtype=torch.float32)
pool_out, indice = pool(data)
unpool_out = unpool(input=pool_out, indices=indice)print("pool_out = ", pool_out)
print("indice = ", indice)
print("unpool_out = ", unpool_out)"""
pool_out =  tensor([[[[ 6.,  8.],[14., 16.]]]])
indice =  tensor([[[[ 5,  7],[13, 15]]]])
unpool_out =  tensor([[[[ 0.,  0.,  0.,  0.],[ 0.,  6.,  0.,  8.],[ 0.,  0.,  0.,  0.],[ 0., 14.,  0., 16.]]]])
"""

2、F.max_pool2d 和 F.max_unpool2d

使用 F.max_pool2d 和 F.max_unpool2d 时不需要实例化,可以直接使用。

import torch
import torch.nn.functional as Fdata = torch.tensor([[[[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12],[13, 14, 15, 16]]]], dtype=torch.float32)
pool_out, indice = F.max_pool2d(input=data, kernel_size=2, stride=2, return_indices=True)
unpool_out = F.max_unpool2d(input=pool_out, indices=indice, kernel_size=2, stride=2)print("pool_out = ", pool_out)
print("indice = ", indice)
print("unpool_out = ", unpool_out)"""
pool_out =  tensor([[[[ 6.,  8.],[14., 16.]]]])
indice =  tensor([[[[ 5,  7],[13, 15]]]])
unpool_out =  tensor([[[[ 0.,  0.,  0.,  0.],[ 0.,  6.,  0.,  8.],[ 0.,  0.,  0.,  0.],[ 0., 14.,  0., 16.]]]])
"""

可以看到,nn.MaxPool2d / nn.MaxUnpool2d 和 F.max_pool2d / F.max_unpool2d 的作用和输出结果完全相同。

3、使用 Pooling 和 Conv2d 实现上/下采样的区别和产生的影响

使用 Pooling 和 Conv2d 实现上/下采样的区别主要体现在对奇数大小的特征图的处理中,以特征图大小为 65*65为例。

使用 nn.MaxPool2d 和 F.max_pool2d 实现下采样时,得到的特征图大小是 32*32,上采样得到的特征图大小是 64*64
使用 nn.Conv2d 实现下采样时,得到的特征图大小是 33*33;再使用nn.ConvTranspose2d 上采样得到的特征图大小是 66*66

在很多对称的网络结构中(如 UNet、SegNet),需要对上采样和下采样的对应的特征图进行大小对齐。

若网络中间某个特征图大小是 65 ,不论使用哪种上/下采样策略,得到的特征图大小必然不可能还是64(不可能是奇数)。此时就要考虑64和66的区别了。

(1)如果使用 64 * 64 大小的特征图,则需要进行 padding 得到 65 * 65 的特征图。但padding操作可能会导致在训练和推理过程中的不确定性问题。

(2)如果使用 66 * 66 大小的特征图,则只需要进行切片得到 65 * 65 的特征图。该操作是更靠谱的。

因此,个人建议使用 nn.Conv2d 和其他函数实现采样操作。

这篇关于PyTorch 的 Pooling 和 UnPooling函数中的 indices 参数:nn.MaxPool2d/nn.MaxUnpool2d、F.max_pool2d/F.max_unpool2d的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/342448

相关文章

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

Java通过反射获取方法参数名的方式小结

《Java通过反射获取方法参数名的方式小结》这篇文章主要为大家详细介绍了Java如何通过反射获取方法参数名的方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、解决方式方式2.1: 添加编译参数配置 -parameters方式2.2: 使用Spring的内部工具类 -

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python如何使用seleniumwire接管Chrome查看控制台中参数

《Python如何使用seleniumwire接管Chrome查看控制台中参数》文章介绍了如何使用Python的seleniumwire库来接管Chrome浏览器,并通过控制台查看接口参数,本文给大家... 1、cmd打开控制台,启动谷歌并制定端口号,找不到文件的加环境变量chrome.exe --rem

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或