提取锂离子电池IC(容量增量)曲线的详细过程处理

2023-11-03 17:20

本文主要是介绍提取锂离子电池IC(容量增量)曲线的详细过程处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在处理锂离子电池的IC曲线时,发现并非简单的微分便可以提取出平滑的IC曲线,所以自己想了一些方式用于从源数据中提取出平滑的IC曲线用于研究分析。

下面开始,该处理方式主要试用于Arbin电池数据采集器的csv源数据文档处理。

文档的读取不在赘述,大家根据文件的储存形式选取自己习惯的读取处理方式。

库的调用准备:

import numpy as np
import os
import pandas as pd
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d#插值函数
import glob #查找文件目录和文件
from scipy.signal import savgol_filter#平滑处理
from sklearn.neighbors import LocalOutlierFactor#异常值处理,数据清洗
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

自定义函数的定义:

def majority_nan_inf(array):total_num = array.sizenan_num = np.sum(np.isnan(array))inf_num = np.sum(np.isinf(array))if nan_num + inf_num >= int(total_num / 2):return 1else:return 0

该函数用于判断该电池循环数据计算后是否绝大部分是异常值

def nan_inf_deal(array):not_nan_indexes = np.where(~np.isnan(array))[0]new_indexes = np.arange(len(array))array = np.interp(new_indexes, not_nan_indexes, array[not_nan_indexes])not_inf_indexes = np.where(~np.isinf(array))[0]new_indexes = np.arange(len(array))array = np.interp(new_indexes, not_inf_indexes, array[not_inf_indexes])return array

该函数用于线性填充数据中nan和inf的位置

在每个电池循环做数据处理,排除异常情况

    for cycle in cycles_take:if (cycle==0):continue#最开始的0次循环记录有问题,丢弃df_lim = df[df['Cycle_Index'] == cycle]last_max_q = max(dc_q)df_dc = df_lim[(df_lim['Step_Index'] == 10)]dc_v = np.array(df_dc['Voltage'])if (len(dc_v) == 0):continue  # 排除无放电数据的循环index=np.where(dc_v>2.2)dc_v=dc_v[index]dc_q=np.array(df_dc['Discharge_Capacity'])[index]if (len (dc_q)==0):continueif (abs(max(dc_q) - last_max_q) > 0.03 or majority_nan_inf(dc_q)):continue#排除容量异常dc_c=np.array(df_dc['Current'])[index]dc_t=np.array(df_dc['Test_Time'])[index]

由放电容量退化曲线图可以看到部分循环时刻记录出错,可能是由于突发状况导致记录暂停,马里兰数据记录时大学周围发生枪击案,导致部分电池数据记录中断几天。

IC曲线的计算公式为

 可以直接使用源数据中的discharge_capacity做差,只需要使用diff函数即可。

在这里我选择使用梯形近似的方式,使用安时计数法进行微分近似处理

        dc_v, indices = np.unique(dc_v, return_index=True)#去除糅杂数据dc_q=dc_q[indices]dc_c = dc_c[indices]dc_t = dc_t[indices]#计算微分dc=dc_c[:-1]+np.diff(dc_c)*0.5#电流微分,每两个点取一个均值,单位Adt=np.diff(dc_t)#单位sdv=np.diff(dc_v)#单位Vdq=dc*dt/3600#As转化为Ahic=dq/dv

对于计算出来的IC值,使用LOF算法去除过于异常的取值

        if (majority_nan_inf(ic)):continuestart_v=dc_v[:-1]+np.diff(dc_v)*0.5ic=nan_inf_deal(ic)start_v, ic_index = np.unique(start_v, return_index=True)ic=ic[ic_index]#数据清洗eg:某些点由于取点过密导致值太大了ic_change=ic.reshape(-1, 1)lof = LocalOutlierFactor(n_neighbors=10)#10lof.fit(ic_change)outlier_labels = lof.fit_predict(ic_change)# 获取异常值的标记# 取出非异常的点ic_wash=ic[outlier_labels==1]start_v_wash=start_v[outlier_labels==1]

杂乱无章的数据不便于我们统计分析,所以需要插值处理得到具有相同索引的数据

        ic_number=60v_index=np.linspace(2.81,3.40,ic_number)f_c_wash = interp1d(start_v_wash, ic_wash, kind='cubic', fill_value="extrapolate")deal_wash = f_c_wash(v_index)deal_wash = nan_inf_deal(deal_wash)

将插值完成的数据进行平滑处理,得到特征明显的IC曲线

        window_size = 15  poly_order = 3  deal_wash_smooth = savgol_filter(deal_wash, window_size, poly_order)

最后展示一下使用如上方法处理得到的IC曲线和原始数据之间的区别,可以看到我们的异常值处理和平滑处理使得大量特征得到保留的同时使得IC曲线更加平滑。

再展示一下对于插值后的数据,平滑处理的对比:

 欢迎批评指正,如果本文对你有帮助的话,尽量点赞收藏,谢谢。

本文仅供参考,引用请标注来源。

这篇关于提取锂离子电池IC(容量增量)曲线的详细过程处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/339726

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

Springboot 中使用Sentinel的详细步骤

《Springboot中使用Sentinel的详细步骤》文章介绍了如何在SpringBoot中使用Sentinel进行限流和熔断降级,首先添加依赖,配置Sentinel控制台地址,定义受保护的资源,... 目录步骤 1: 添加 Sentinel 依赖步骤 2: 配置 Sentinel步骤 3: 定义受保护的

PLsql Oracle 下载安装图文过程详解

《PLsqlOracle下载安装图文过程详解》PL/SQLDeveloper是一款用于开发Oracle数据库的集成开发环境,可以通过官网下载安装配置,并通过配置tnsnames.ora文件及环境变... 目录一、PL/SQL Developer 简介二、PL/SQL Developer 安装及配置详解1.下