提取锂离子电池IC(容量增量)曲线的详细过程处理

2023-11-03 17:20

本文主要是介绍提取锂离子电池IC(容量增量)曲线的详细过程处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在处理锂离子电池的IC曲线时,发现并非简单的微分便可以提取出平滑的IC曲线,所以自己想了一些方式用于从源数据中提取出平滑的IC曲线用于研究分析。

下面开始,该处理方式主要试用于Arbin电池数据采集器的csv源数据文档处理。

文档的读取不在赘述,大家根据文件的储存形式选取自己习惯的读取处理方式。

库的调用准备:

import numpy as np
import os
import pandas as pd
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d#插值函数
import glob #查找文件目录和文件
from scipy.signal import savgol_filter#平滑处理
from sklearn.neighbors import LocalOutlierFactor#异常值处理,数据清洗
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

自定义函数的定义:

def majority_nan_inf(array):total_num = array.sizenan_num = np.sum(np.isnan(array))inf_num = np.sum(np.isinf(array))if nan_num + inf_num >= int(total_num / 2):return 1else:return 0

该函数用于判断该电池循环数据计算后是否绝大部分是异常值

def nan_inf_deal(array):not_nan_indexes = np.where(~np.isnan(array))[0]new_indexes = np.arange(len(array))array = np.interp(new_indexes, not_nan_indexes, array[not_nan_indexes])not_inf_indexes = np.where(~np.isinf(array))[0]new_indexes = np.arange(len(array))array = np.interp(new_indexes, not_inf_indexes, array[not_inf_indexes])return array

该函数用于线性填充数据中nan和inf的位置

在每个电池循环做数据处理,排除异常情况

    for cycle in cycles_take:if (cycle==0):continue#最开始的0次循环记录有问题,丢弃df_lim = df[df['Cycle_Index'] == cycle]last_max_q = max(dc_q)df_dc = df_lim[(df_lim['Step_Index'] == 10)]dc_v = np.array(df_dc['Voltage'])if (len(dc_v) == 0):continue  # 排除无放电数据的循环index=np.where(dc_v>2.2)dc_v=dc_v[index]dc_q=np.array(df_dc['Discharge_Capacity'])[index]if (len (dc_q)==0):continueif (abs(max(dc_q) - last_max_q) > 0.03 or majority_nan_inf(dc_q)):continue#排除容量异常dc_c=np.array(df_dc['Current'])[index]dc_t=np.array(df_dc['Test_Time'])[index]

由放电容量退化曲线图可以看到部分循环时刻记录出错,可能是由于突发状况导致记录暂停,马里兰数据记录时大学周围发生枪击案,导致部分电池数据记录中断几天。

IC曲线的计算公式为

 可以直接使用源数据中的discharge_capacity做差,只需要使用diff函数即可。

在这里我选择使用梯形近似的方式,使用安时计数法进行微分近似处理

        dc_v, indices = np.unique(dc_v, return_index=True)#去除糅杂数据dc_q=dc_q[indices]dc_c = dc_c[indices]dc_t = dc_t[indices]#计算微分dc=dc_c[:-1]+np.diff(dc_c)*0.5#电流微分,每两个点取一个均值,单位Adt=np.diff(dc_t)#单位sdv=np.diff(dc_v)#单位Vdq=dc*dt/3600#As转化为Ahic=dq/dv

对于计算出来的IC值,使用LOF算法去除过于异常的取值

        if (majority_nan_inf(ic)):continuestart_v=dc_v[:-1]+np.diff(dc_v)*0.5ic=nan_inf_deal(ic)start_v, ic_index = np.unique(start_v, return_index=True)ic=ic[ic_index]#数据清洗eg:某些点由于取点过密导致值太大了ic_change=ic.reshape(-1, 1)lof = LocalOutlierFactor(n_neighbors=10)#10lof.fit(ic_change)outlier_labels = lof.fit_predict(ic_change)# 获取异常值的标记# 取出非异常的点ic_wash=ic[outlier_labels==1]start_v_wash=start_v[outlier_labels==1]

杂乱无章的数据不便于我们统计分析,所以需要插值处理得到具有相同索引的数据

        ic_number=60v_index=np.linspace(2.81,3.40,ic_number)f_c_wash = interp1d(start_v_wash, ic_wash, kind='cubic', fill_value="extrapolate")deal_wash = f_c_wash(v_index)deal_wash = nan_inf_deal(deal_wash)

将插值完成的数据进行平滑处理,得到特征明显的IC曲线

        window_size = 15  poly_order = 3  deal_wash_smooth = savgol_filter(deal_wash, window_size, poly_order)

最后展示一下使用如上方法处理得到的IC曲线和原始数据之间的区别,可以看到我们的异常值处理和平滑处理使得大量特征得到保留的同时使得IC曲线更加平滑。

再展示一下对于插值后的数据,平滑处理的对比:

 欢迎批评指正,如果本文对你有帮助的话,尽量点赞收藏,谢谢。

本文仅供参考,引用请标注来源。

这篇关于提取锂离子电池IC(容量增量)曲线的详细过程处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/339726

相关文章

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

作业提交过程之HDFSMapReduce

作业提交全过程详解 (1)作业提交 第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。 第2步:Client向RM申请一个作业id。 第3步:RM给Client返回该job资源的提交路径和作业id。 第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。 第5步:Client提交完资源后,向RM申请运行MrAp

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

沁恒CH32在MounRiver Studio上环境配置以及使用详细教程

目录 1.  RISC-V简介 2.  CPU架构现状 3.  MounRiver Studio软件下载 4.  MounRiver Studio软件安装 5.  MounRiver Studio软件介绍 6.  创建工程 7.  编译代码 1.  RISC-V简介         RISC就是精简指令集计算机(Reduced Instruction SetCom

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

arduino ide安装详细步骤

​ 大家好,我是程序员小羊! 前言: Arduino IDE 是一个专为编程 Arduino 微控制器设计的集成开发环境,使用起来非常方便。下面将介绍如何在不同平台上安装 Arduino IDE 的详细步骤,包括 Windows、Mac 和 Linux 系统。 一、在 Windows 上安装 Arduino IDE 1. 下载 Arduino IDE 打开 Arduino 官网

Solr 使用Facet分组过程中与分词的矛盾解决办法

对于一般查询而言  ,  分词和存储都是必要的  .  比如  CPU  类型  ”Intel  酷睿  2  双核  P7570”,  拆分成  ”Intel”,”  酷睿  ”,”P7570”  这样一些关键字并分别索引  ,  可能提供更好的搜索体验  .  但是如果将  CPU  作为 Facet  字段  ,  最好不进行分词  .  这样就造成了矛盾  ,  解决方法

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训