Chapter4 : Application of Artificial Intelligence and Machine Learning in Drug Discovery

本文主要是介绍Chapter4 : Application of Artificial Intelligence and Machine Learning in Drug Discovery,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

reading notes of《Artificial Intelligence in Drug Design》


文章目录

  • 1.Introduction
  • 2.Generative Chemistry
  • 3.Target Profiling
  • 4.ADMET Prediction and Scoring
  • 5.Synthesis Planning
  • 6.Conclusion

1.Introduction

请添加图片描述
请添加图片描述

  • In addition to FAIR principles, Schneider et al. provide an excellent discussion on how data should also follow the ALCOA (Attributable, Legible, Contemporaneous, Original and Accurate) guidelines as defined by US FDA.

  • As a general principal when an opportunity or challenge is recognized within the drug discovery pipeline, we first ask ourselves if applying machine learning would be a good idea. Are there other methods that may be better as well as quicker to get us the desired information? This leads to investigating the actual use case as well as evaluating the amount and quality of data available for such application.

请添加图片描述
请添加图片描述

2.Generative Chemistry

  • Generative chemistry methods can combine scoring based on multiparameters to allow picking compounds that check most of the criteria as set by the project teams.

  • There has been work done to bring chemistry and biology close to each other by utilizing gene expression information in de-novo compound generation.

  • Potentially possible, it would be useful to allow retrosynthesis be part of the latent space during the generative chemistry process so that users can get synthetically viable compounds.

3.Target Profiling

  • The next challenge at hand is target profiling or target assessment. This also includes predicting polypharmacology as well as off-target effects (including toxicity predictions).
  • A wishful thinking in the area of target profiling may be to utilize machine learning models using clinical as well as real world evidence (RWE) data in addition to all available preclinical data for better target and disease validation.

4.ADMET Prediction and Scoring

  • Various academic groups and industry have invested a lot of resources to provide these models due to the fact that there are frequent late stage failures due to either undesirable ADME properties or toxicity issues. Some of these properties could be measured in a high throughput fashion and thereby leading to generation of large data sets suitable for machine learning.

  • It’s imperative to discuss a few best practices:

    • models should be interpretable
    • models should not only be predictable but provide “confidence” for every prediction
    • models should be updated routinely to keep them up to data with newly measured data
    • Some sort of prospective predictions should be captured at the time of model update process so that project teams can assess the quality of a model for their projects in a prospective way.
  • An interesting idea to work on would be to build machine learning models that can utilize predicted ADMET properties in addition to physchem properties and generate low dose compounds.

5.Synthesis Planning

  • In a more recent work by Coley et al., a panel of ~140K reaction templates was developed as a framework.
  • There are several limitations:
    • sufficiently cover the reaction space
    • insufficient negative examples
  • To enable collection of a larger dataset that could potentially contain more diverse and both positive and negative examples, one could imagine building a consortium where various pharmaceutical industry representatives can encrypt their respective ELN datasets and share that publicly at a precompetitive level.

6.Conclusion

  • We strongly believe that this is the high time when industry embraces these methods and make them part of their routine drug discovery process.

这篇关于Chapter4 : Application of Artificial Intelligence and Machine Learning in Drug Discovery的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/338616

相关文章

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

(南京观海微电子)——GH7006 Application Note

Features ⚫ Single chip solution for a WXGA α-Si type LCD display ⚫ Integrate 1200 channel source driver and timing controller ⚫ Display Resolution: ◼ 800 RGB x 480 ◼ 640 RGB x 480 ⚫ Display int

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

ZOJ 3324 Machine(线段树区间合并)

这道题网上很多代码是错误的,由于后台数据水,他们可以AC。 比如这组数据 10 3 p 0 9 r 0 5 r 6 9 输出应该是 0 1 1 所以有的人直接记录该区间是否被覆盖过的方法是错误的 正确方法应该是记录这段区间的最小高度(就是最接近初始位置的高度),和最小高度对应的最长左区间和右区间 开一个sum记录这段区间最小高度的块数,min_v 记录该区间最小高度 cover

git中,隐藏application.properties文件,修改不用提交了

git中,隐藏application.properties文件,修改不用提交了 A、将文件名放入 .gitignore 文件中 B、执行git命令隐藏文件         执行在ide上执行命令         a、执行隐藏命令 git rm --cached src/main/resources/application.properties          b、执行提交命

AI基础 L1 Introduction to Artificial Intelligence

什么是AI Chinese Room Thought Experiment 关于“强人工智能”的观点,即认为只要一个系统在行为上表现得像有意识,那么它就真的具有理解能力。  实验内容如下: 假设有一个不懂中文的英语说话者被关在一个房间里。房间里有一本用英文写的中文使用手册,可以指导他如何处理中文符号。当外面的中文母语者通过一个小窗口传递给房间里的人一些用中文写的问题时,房间里的人能够依

#error: Building MFC application with /MD[d] (CRT dll version) requires MFC shared dll version

昨天编译文件时出现了Building MFC application with /MD[d] (CRT dll version)requires MFC shared dll version~~~~的错误。   在网上很容易找到了解决的方案,公布如下:   对着你的项目点击右键,依次选择:属性、配置属性、常规,然后右边有个“项目默认值”,下面有个MFC的使用,选择“在共享 DLL 中使

Learning Memory-guided Normality for Anomaly Detection——学习记忆引导的常态异常检测

又是一篇在自编码器框架中研究使用记忆模块的论文,可以看做19年的iccv的论文的衍生,在我的博客中对19年iccv这篇论文也做了简单介绍。韩国人写的,应该是吧,这名字听起来就像。 摘要abstract 我们解决异常检测的问题,即检测视频序列中的异常事件。基于卷积神经网络的异常检测方法通常利用代理任务(如重建输入视频帧)来学习描述正常情况的模型,而在训练时看不到异常样本,并在测试时使用重建误

Learning Temporal Regularity in Video Sequences——视频序列的时间规则性学习

Learning Temporal Regularity in Video Sequences CVPR2016 无监督视频异常事件检测早期工作 摘要 由于对“有意义”的定义不明确以及场景混乱,因此在较长的视频序列中感知有意义的活动是一个具有挑战性的问题。我们通过在非常有限的监督下使用多种来源学习常规运动模式的生成模型(称为规律性)来解决此问题。体来说,我们提出了两种基于自动编码器的方法,以