探秘华为云盘古大模型:AI for industries的身体力行

2023-11-03 07:10

本文主要是介绍探秘华为云盘古大模型:AI for industries的身体力行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要:大模型是新一轮AI发展的核心,其已在推进产业智能化升级中已表现出巨大潜力,并将在未来三年里形成风起云涌之势。

本文分享自华为云社区《探秘华为云盘古大模型:AI for industries的身体力行》,作者:华为云头条。

大模型是新一轮AI发展的核心,其已在推进产业智能化升级中已表现出巨大潜力,并将在未来三年里形成风起云涌之势。

华为云于2021年正式发布了盘古基础大模型,包括CV计算机视觉大模型、NLP自然语言处理大模型和科学计算大模型。在基础大模型之上,华为云践行AI for industries,陆续推出了矿山、药物分子、电力、气象、海浪等盘古行业大模型,加速各行各业数字化的进程。

货运列车智慧检测,盘古轨道大模型为铁路物流安全护航

随着海内外经济复苏,货运铁路的班次及载重均迎来新高潮。

在传统的货运铁路巡检中,TFDS(货车运行故障动态图像检测)系统作为5T检测技术的重要组成部分,通过高速拍摄的“电子眼”,动态采集列车车底配件、车体侧部等部位图像,实时判别货运列车是否存在故障。

一列50辆车厢的货车,“电子眼”会拍摄4000张照片,检测员每秒需审阅1张图。动态检车员不仅工作强度大、难度高,而且需对车辆专业理论与实际运用有较高水平,要在短时间内完成整列车的故障分析,确保整列车的运行安全。

华为云在现有设备和平台架构的基础上,基于盘古轨道行业大模型,推出TFDS故障智能识别方案,实现从图像采集、数据收发、列车拆分,到实时故障判别的全局分析,能够对多工位、多辆车关联等全局故障进行精准预报。

盘古铁路行业大模型具备五项核心竞争力:

  • 自监督行业预训练模型

盘古预训练大模型基于语义相似样本、等级化语义聚集的对比表示学习方法,利用百万级无标注铁路行业图像生成轨道行业大模型;

  • 图像质量自动增强&评估

通过底层视觉特征以及高层视觉特征对增强后的图像进行自动评估,对正常图像做进一步故障识别,非正常图像返回人工审核;

  • 依托车型先验模板匹配

根据已知的车型信息建立零部件的相对位置模板,具有可解释性地预报部件异常情况,如脱落、丢失、错位等;

  • 小样本故障定位、识别

基于轨道行业预训练大模型,结合当前最优的目标检测、图像识别框架,进行部件定位、故障识别,具有更强的泛化能力,仅需传统1/3的样本即可完成。

在实际应用中,盘古轨道大模型单张照片识别仅需4毫秒,可智能过滤95%的正常图片,实现了400多种故障的自动化识别以及严重故障的“零漏报”,比人工识别更准确,大幅度提升TFDS系统作业效率,动态检车员可腾出更多精力处理难度更高的辨图工作,确保列车安全运行。

▶AI辅助药物设计,盘古药物分子大模型加速新药研发

自1987年达托霉素被发现以来,人类已经有近40年没有新的抗生素被研发出来。药物研发专家需要花费超过10年时间、超过10亿美元成本,才有可能研发出一款新药。

为了帮助药物研发专家从海量药物分子中高效挑选出适合成药的小分子,华为云联合中国科学院上海药物研究所推出了盘古药物分子大模型,基于全流程AI辅助药物设计的能力,以靶点预测、分子设计、活性评估、毒性筛选等环节为抓手,帮助医药公司实现快速、精准、低成本的药物发现,开启药物研发的新模式。

  • 在药物虚拟筛选方面

依靠华为云创新的iFitDock算法以及虚拟筛选服务,盘古药物分子大模型的成药性预测准确率比传统方式高20%,进而让药物筛选效率提升十倍;

  • 在药物优化方面

基于华为云盘古药物分子大模型的结构优化器,研发专家可对先导药进行定向优化,通过更科学的药物结构设计,减弱对人体正常细胞可能产生的毒副作用。

盘古药物分子大模型四大核心技术特点:

  • “图-序列不对称条件变分自编码器”

全新提出“图-序列不对称条件变分自编码器”深度学习架构,更好地提取化合物关键的分子特征指纹,提升下游任务的准确性;

  • 超大规模的化合物表征模型训练

对17亿个小分子的化学结构进行预训练,结构重构率、唯一性等方面优于现有方法;

  • 生成1亿个创新的类药物小分子库

其结构新颖性为99.68%,为发现新药创造可能性;

  • 实现了领先的药物发现任务性能

在化合物-靶标相互作用预测、化合物ADME/T属性评分、化合物分子生成与优化等方面实现性能最优,赋能药物发现全链条任务。

西安交通大学第一附属医院刘冰教授在盘古药物分子大模型的辅助下,突破性地研发出一款超级抗菌药Drug X,其有望成为全球近40年来首个新靶点、新类别的抗生素。华为云盘古药物分子大模型让先导药的研发周期从数年缩短至几个月,研发成本降低70%。AI技术与基础科学的结合与创新,不仅解决了研发成本高和时间周期长的痛点,更为初创型科研团队提供了施展能力的舞台。

▶让风云可测,盘古气象大模型精准呈现台风轨迹

在气象气候预报任务中,除了短期天气预报,全球中长期预报也是业界最为关注、重要性非常高的预测任务,它以预测未来14天内的大气系统状态为目标,在气象、航海、农业、旅游等多个行业发挥着举足轻重的作用。

当前人工智能技术虽已广泛应用在气象预测领域,受大气系统中物理过程的复杂性影响,以及求解大气模型所需资源规模巨大,基于传统数值方法进行的中长期天气预报通常会累计误差,导致准确度低,且需在超级计算机上运算数小时。

基于近40年的全球气象数据,华为云盘古气象大模型在中长期确定性预报上超越当前最强的数值预报方法(欧洲气象中心的IFS系统),是业内首个精度超过传统数值预报方法的全球AI气象预测模型。平均预报误差降低了10%-15%,速度提升10000倍以上,实现秒级全球气象预报。

盘古气象大模型核心技术特点:

  • 3D高分辨率的神经网络

首次采用3D高分辨率的神经网络(3D Earth-Specific Transformer):与二维的神经网络和低分辨率的神经网络相比,盘古气象大模型水平空间分辨率达到0.25∘×0.25∘,约28公里x28公里,可以精准地预测细粒度气象特征。在时间维度上,盘古气象大模型将预测频率从6小时/次提升至1小时/次,使气象预测结果更准确;

  • 层次化时域聚合策略

使用层次化时域聚合策略:训练了4个不同预报间隔的模型(分别为1小时间隔、3小时间隔、6小时间隔、24小时间隔),使得预测特定时间气象状况的迭代次数最小,从而减少迭代误差,也避免了由递归训练带来的训练资源消耗。

华为云盘古气象大模型在极端天气过程(如台风)的预报中已展现出精准、快速的优势:

  • 2022年8月,盘古气象大模型实现秒级预测台风“马鞍”的轨迹和登陆时间,准确率达90%,远超行业平均水平。
  • 今年5月22日至23日,今年第2号台风“玛娃”在24小时内,中心附近最大风力从38米/秒(台风级)迅速加强到60米/秒(超强台风级)。

中央气象局指出,华为云盘古大模型在“玛娃”的路径预报中表现优异,提前五天预报出其将在台湾岛东部海域转向路径。

人工智能触发的产业变革正在改变每一个行业,人工智能也在越来越多的行业场景发挥重要价值。华为云以“AI for industries”为发力点,提升大模型通用能力,贴近客户业务场景的现实需求,让人工智能开发标准化、可复制、批量化生产,加速AI深入千行百业,推动人类社会进入智能世界。华为开发者大会2023 ( Cloud )大会将于7月7日在东莞拉开帷幕,华为云盘古大模型将迎来重大升级,敬请期待!

号外

7月7日,华为开发者大会2023 ( Cloud )将拉开帷幕,并将在国内30多个城市、海外10多个国家开设分会场,诚邀您参加这场不容错过的年度开发者盛会,让我们一起开启探索之旅!

我们将携手开发者、客户、合作伙伴,为您呈现华为云系列产品服务与丰富的创新实践,并与您探讨AI、大数据、数据库、PaaS、aPaaS、媒体服务、云原生、安全、物联网、区块链、开源等技术话题,展开全面深入的交流。

大会将汇聚全球科学家、行业领袖、技术专家、社区大咖,开设200多场开发者专题活动,为全球开发者提供面对面交流与合作的机会,共同探讨技术创新和业务发展。

大会官网:https://developer.huaweicloud.com/HDC.Cloud2023.html

参会购票:https://www.vmall.com/product/10086352254099.html?cid= 211761

点击参与开发者社区活动,观赏技术大咖秀、玩转技术梦工厂,有机会赢取4000元开发者礼包!

欢迎关注“华为云开发者联盟”公众号,获取大会议程、精彩活动和前沿干货。

点击关注,第一时间了解华为云新鲜技术~

这篇关于探秘华为云盘古大模型:AI for industries的身体力行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/336480

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费