51 个深度学习目标检测模型汇总,论文、源码一应俱全!

本文主要是介绍51 个深度学习目标检测模型汇总,论文、源码一应俱全!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI有道”,选择“星标”公众号

重磅干货,第一时间送达640?wx_fmt=jpeg

目标检测(Object Detection)是深度学习 CV 领域的一个核心研究领域和重要分支。纵观 2013 年到 2019 年,从最早的 R-CNN、Fast R-CNN 到后来的 YOLO v2、YOLO v3 再到今年的 M2Det,新模型层出不穷,性能也越来越好!本文将会对目标检测近几年的发展和相关论文做出一份系统介绍,总结一份超全的文献 paper 列表。

模型列表先一睹为快!(建议收藏

640?wx_fmt=png

这份目标检测超全的技术路线总结来自于 GitHub 上一个知名项目,作者是 Lee hoseong,项目地址是:

https://github.com/hoya012/deep_learning_object_detection

该技术路线横跨时间是 2014 年至 2019 年,上图总结了这期间目标检测所有重要的模型。图中标红的部分是作者认为比较重要,需要重点掌握的模型。当然每个人有都有各自的评价。

模型性能比较

FPS(速度)索引与硬件规格(如 CPU、GPU、RAM 等)有关,因此很难进行同等比较。解决方案是在具有相同规格的硬件上测量所有模型的性能,但这是非常困难和耗时的。比较结果如下:

640?wx_fmt=png

640?wx_fmt=png

下面举例对标红的重要模型进行介绍!

2014 年

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation | Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik | [CVPR' 14]

论文:

https://arxiv.org/pdf/1311.2524.pdf

代码 Caffe:

https://github.com/rbgirshick/rcnn

OverFeat

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks | Pierre Sermanet, et al. | [ICLR' 14]

论文:

https://arxiv.org/pdf/1312.6229.pdf

代码 Torch:

https://github.com/sermanet/OverFeat

2015 年

Fast R-CNN

Fast R-CNN | Ross Girshick | [ICCV' 15]

论文:

https://arxiv.org/pdf/1504.08083.pdf

代码 caffe:

https://github.com/rbgirshick/fast-rcnn

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks | Shaoqing Ren, et al. | [NIPS' 15]

论文:

https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf

代码 caffe:

https://github.com/rbgirshick/py-faster-rcnn

代码 tensorflow:

https://github.com/endernewton/tf-faster-rcnn

代码 pytorch:

https://github.com/jwyang/faster-rcnn.pytorch

2016 年

OHEM

Training Region-based Object Detectors with Online Hard Example Mining | Abhinav Shrivastava, et al. | [CVPR' 16]

论文:

https://arxiv.org/pdf/1604.03540.pdf

代码 caffe:

https://github.com/abhi2610/ohem

YOLO v1

You Only Look Once: Unified, Real-Time Object Detection | Joseph Redmon, et al. | [CVPR' 16]

论文:

https://arxiv.org/pdf/1506.02640.pdf

代码 c:

https://pjreddie.com/darknet/yolo/

SSD

Single Shot MultiBox Detector | Wei Liu, et al. | [ECCV' 16]

论文:

https://arxiv.org/pdf/1512.02325.pdf

代码 caffe:

https://github.com/weiliu89/caffe/tree/ssd

代码 tensorflow:

https://github.com/balancap/SSD-Tensorflow

代码 pytorch:

https://github.com/amdegroot/ssd.pytorch

R-FCN

Object Detection via Region-based Fully Convolutional Networks | Jifeng Dai, et al. | [NIPS' 16]

论文:

https://arxiv.org/pdf/1605.06409.pdf

代码 caffe:

https://github.com/daijifeng001/R-FCN

代码 caffe:

https://github.com/YuwenXiong/py-R-FCN

2017 年

YOLO v2

Better, Faster, Stronger | Joseph Redmon, Ali Farhadi | [CVPR' 17]

论文:

https://arxiv.org/pdf/1612.08242.pdf

代码 c:

https://pjreddie.com/darknet/yolo/

代码 caffe:

https://github.com/quhezheng/caffe_yolo_v2

代码 tensorflow:

https://github.com/nilboy/tensorflow-yolo

代码 tensorflow:

https://github.com/sualab/object-detection-yolov2

代码 pytorch:

https://github.com/longcw/yolo2-pytorch

FPN

Feature Pyramid Networks for Object Detection | Tsung-Yi Lin, et al. | [CVPR' 17]

论文:

http://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.pdf

代码 caffe:

https://github.com/unsky/FPN

RetinaNet

Focal Loss for Dense Object Detection | Tsung-Yi Lin, et al. | [ICCV' 17]

论文:

https://arxiv.org/pdf/1708.02002.pdf

代码 keras:

https://github.com/fizyr/keras-retinanet

代码 pytorch:

https://github.com/kuangliu/pytorch-retinanet

代码 mxnet:

https://github.com/unsky/RetinaNet

代码 tensorflow:

https://github.com/tensorflow/tpu/tree/master/models/official/retinanet

Mask R-CNN

Kaiming He, et al. | [ICCV' 17]

论文:

http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf

代码 caffe2:

https://github.com/facebookresearch/Detectron

代码 tensorflow:

https://github.com/matterport/Mask_RCNN

代码 tensorflow:

https://github.com/CharlesShang/FastMaskRCNN

代码 pytorch:

https://github.com/multimodallearning/pytorch-mask-rcnn

2018 年

YOLO v3

An Incremental Improvement | Joseph Redmon, Ali Farhadi | [arXiv' 18]

论文:

https://pjreddie.com/media/files/papers/YOLOv3.pdf

代码 c:

https://pjreddie.com/darknet/yolo/

代码 pytorch:

https://github.com/ayooshkathuria/pytorch-yolo-v3

代码 pytorch:

https://github.com/eriklindernoren/PyTorch-YOLOv3

代码 keras:

https://github.com/qqwweee/keras-yolo3

代码 tensorflow:

https://github.com/mystic123/tensorflow-yolo-v3

RefineDet

Single-Shot Refinement Neural Network for Object Detection | Shifeng Zhang, et al. | [CVPR' 18]

论文:

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Single-Shot_Refinement_Neural_CVPR_2018_paper.pdf

代码 caffe:

https://github.com/sfzhang15/RefineDet

代码 chainer:

https://github.com/fukatani/RefineDet_chainer

代码 pytorch:

https://github.com/lzx1413/PytorchSSD

2019 年

M2Det

A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network | Qijie Zhao, et al. | [AAAI' 19]

论文:

https://arxiv.org/pdf/1811.04533.pdf

参考文献

该项目的参考文献来自于论文《Deep Learning for Generic Object Detection: A Survey

论文地址:

https://arxiv.org/pdf/1809.02165v1.pdf

640?wx_fmt=gif

【推荐阅读】

干货 | 公众号历史文章精选(附资源)

我的深度学习入门路线

我的机器学习入门路线图

640?wx_fmt=jpeg

?加入 AI 视界,离人工智能更进一步!

这篇关于51 个深度学习目标检测模型汇总,论文、源码一应俱全!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/333229

相关文章

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操