使用DDPG算法实现cartpole 100万次不倒

2023-11-02 19:20

本文主要是介绍使用DDPG算法实现cartpole 100万次不倒,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DDPG的全称是Deep Deterministic Policy Gradient,一种Actor Critic机器增强学习方法。
CartPole是http://gym.openai.com/envs/CartPole-v0/ 这个网站提供的一个杆子不倒的测试环境。 CartPole环境返回一个状态包括位置、加速度、杆子垂直夹角和角加速度。玩家控制左右两个方向使杆子不倒。杆子倒了或超出水平位置限制就结束一个回合。一个回合中杆不倒动作步数越多越好。
cartpole_ddpg 程序是训练出一个DDPG神经网络,用来玩CartPole-v0,使杆子不倒,步数越多越好。现在程序已可以训练出100万步不倒的网络。
源代码:https://github.com/ccjy88/cartpole_ddpg
最多测过一个回合中100万步不倒,为了节约时间程序中一个回合坚持100000步杆子不倒,程序主动退出循环。用现在程序参数1000个回合内就可以产生不倒的回合。
10万次没有倒
算法特点:
为了尽可能多的得到Critic评价的高分,就需要尽可能多的尝试各种可能。因些每一个回合尝试的步
数 MAX_EP_STEPS 设置的比较大为7500步,也可以设置为10000步、20000步。

为了尽可能多的尝试各种可能,开始运行时通过加入随机数产生动作,大约前450次是搜集数据并不学习。等采集的样本数大于MAX_EP_STEPS后才开始学习。当一个回合结束时或达到MAX_EP_STEPS步,在这个回合中记录的奖励reward计算奖励贴现值。并将这个奖励用来训来Critic的Q估计网络和Q_现实网络。大约学习330个回合后就可以产生永远不倒的情况了,前450个回合并只是收集数据没有学习。

程序说明:
cartpole_DDPG.py 是主程序。
设置一个回合最大步数MAX_EP_STEPS=7500
记录状态动作的内存也是7500行容量。
创建Brain_DDPG为agent。
在每个回合的步骤中,从agent获得动作,并加入正确分布的随机值。随机值的系数在训练后逐步减少直至为0.
从环境获得奖励和下一个状态,并存储在这个回合的记忆内存中。
每个回合结束后在回合记忆内存中计算奖励的贴现值,并增加到agent的记忆中。
agent的记忆中足够大再开始学习,对于坚持步数很多的回合全部学习,而不是随机取样学习,要全面学习。

Brain_DDPG.py为DDPG算法实现的内核。
DDPG算法公式略。
大思路为根据状态、动作和奖励,训练出一个Critic能对状态和动作正确打分Q。
有了分值Q,就可以再训练一个Actor在状态s时能做出高分动作a。
现在的程序能在学习几百个回合后,训练出一个Brain,实现一个回合10万次百万次杆子不倒。

定义变量当前状态s 下一个状态s_ 当前动作a,下一个动作a_,奖励r
封装类Brain_DDPG做为API接口。Brain_DDPG的四个子类:
Q是Critic,打分的网络,Q(s,a)打出分q
Q是打分估计网络。Q_打分的现实网络。Q和Q_结构完全相同,参数由Q逐步同步到Q_
U是Actor,是执行动作的网络。U(s)返回动作a
U是动作估计网络,U_是动作现实网络。U和U_结构完全相同,参数由U逐步同步到U_

核心算法是先由U_(s_)算出下一个动作a_
再由Q_和参数r,s_,a_算出q的现实值q_target = r + gamma * Q_(s_,a_)
由Q(s,a)算出估计值q
损失函数就是 q_target - q的差的平方再平均。
对着损失函数不断进行梯度下降学习,就可以训练出打分的Q网络了。Q参数再软同步到Q_

有了Q,那么就需要让动作网络训练成返回高分的动作。设U的参数为theta(U)。
为了求最大值需要求梯度grad(Q,theta(u))。按复合函数求导公式写成
grad_u = (grad(U * grad(Q,grad(U) ,theta(u))
对 grad_u 进行梯度下降优化,可以优化网络U的参数theta(U),使U(s)返回的动作a打分Q最高。因为tensorflow中的优化器支不持最大值,所以使用了负的学习率并求最小值。

源代码:
https://github.com/ccjy88/cartpole_ddpg
程序测试环境:
python 3.7.7
tensorflow 1.15.0rc3
无显卡无硬件加速

参考:
https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow/tree/master

这篇关于使用DDPG算法实现cartpole 100万次不倒的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/332752

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖