代碼隨想錄算法訓練營|第五十八天|583. 两个字符串的删除操作、72. 编辑距离、编辑距离总结篇。刷题心得(c++)

本文主要是介绍代碼隨想錄算法訓練營|第五十八天|583. 两个字符串的删除操作、72. 编辑距离、编辑距离总结篇。刷题心得(c++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

讀題

583. 两个字符串的删除操作

自己看到题目的第一想法

看完代码随想录之后的想法

72. 编辑距离

看完代码随想录之后的想法

583. 两个字符串的删除操作 - 實作

思路

代碼隨想錄思路

Code

72. 编辑距离 - 實作

思路

Code

编辑距离总结篇

判斷子序列

不同的子序列

兩個字符串的刪除操作

編輯距離

總結

判斷子序列

不同子序列

兩個字符串的刪除操作

編輯距離


讀題

583. 两个字符串的删除操作

自己看到题目的第一想法

如果今天可以兩個都刪除,那在w1[i - 1] 以及 w2[j - 1]的狀況下有三種狀況,兩者匹配,dp[i - 1][j - 1],不使用w1[i - 1]→dp[i - 1][j] 不使用w2[j - 1] → dp[i][j - 1],有用畫圖的方式嘗試理解但仍然無法推出狀態的改變。

看完代码随想录之后的想法

看完之後,才真正了解自己哪裡錯了,首先下標就定義錯了,下標應該是dp[i][j] w1[i - 1]為結尾以及w2[j - 1]為結尾如果想要達到相等,所需要刪除元素的最少次數為dp[i][j]

根據這個定義,如果相等的時候,不用刪除元素,那就會等於不包含當前i - 1 j - 1的 i - 2 j - 2,也就是dp[i][j] = dp[i - 1][j - 1]

如果不相等,則會有三種狀況可以刪除w1 最少操作次數就是不包含當前的w[i - 1]的狀況也就是dp[i - 1][j] + 1 也可以選擇刪除w2 最少操作次數是dp[i][j - 1] + 1,不包含當前w2[j - 1]的最少狀況。

也可以兩個都刪除,也就是dp[i - 1][j - 1] + 2,但這個我們可以思考為,之前的兩種狀況就有包含了,如果刪除w1,那是取不包含w1[i - 1]的狀況,換言之,就是刪除w1[i - 1]的狀況是dp[i - 1][j] ,在這個基礎上再減去w2[j - 1]這一個數就是dp[i - 1][j] + 1。

最後可以簡化為dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

72. 编辑距离

看完代码随想录之后的想法

非常清晰,基本上有寫過之前的題目就會知道其中的門道,跟上一題一樣,先定義好dp[i][j]的定義,在下標word1[i - 1]以及下標word2[j-1],使其相同的最小編輯距離為dp[i][j]。

那就一樣會有兩種狀況相同與不相同

相同的話就是dp[i][j] = dp[i - 1][j - 1]代表不需要任何操作,跟上一次不包含word1[i - 1]以及word2[j - 1]的狀況一致

不相同的話要做增刪換

增和刪可以想成同樣一個,操作數都是一樣的,引用代碼隨想錄中提到的例子

word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"word1删除元素'd' 和 word2添加一个元素'd',变成word1="a", word2="ad", 最终的操作数是一样! dp数组如下图所示意的:

      0     a                   0     a     d+-----+-----+             +-----+-----+-----+0 |  0  |  1  |           0 |  0  |  1  |  2  |+-----+-----+   ===>      +-----+-----+-----+a |  1  |  0  |           a |  1  |  0  |  1  |+-----+-----+             +-----+-----+-----+d |  2  |  1  |+-----+-----+

替換的話代表只需要替換其中一個數就可以一致,那就會是dp[i][j] = dp[i - 1][j - 1] + 1,代表我只要替換word1 或者word2就可以使得兩者相同。使用dp[i - 1][j - 1]的緣故是,這個數不包含word1、或word2,所以如果只需要替換一個數就可以達成,那就是將這個數加一就好

583. 两个字符串的删除操作 - 實作

思路

  1. 定義DP數組以及下標的含意

    i - 1 下標的word1以及 j - 1 下標的word2,要達到相同的子序列最少需要刪除多少次為dp[i][j]

  2. 遞推公式

    分成兩種狀態相同與不相同

    相同的話代表不用刪除,也就是dp[i - 1][j - 1]即為上一次不包含當前兩個數的狀況

    不相同的話有三種狀況

    • 刪除word1
      • 代表不包含當前word1的狀況在加上一個刪除的個數也就是dp[i - 1][j] + 1
    • 刪除word2
      • 代表不包含當前word2的狀況再加上1個刪除數,也就是dp[i][j - 1] + 1
    • 刪除word1、word2
      • 代表不包含當前word1、word2的狀況加上兩個刪除數,也就是dp[i - 1][j - 1] + 2
      • 但可以換個角度來看,如果刪除word1或word2時,我們要先得知不包含word1或word2的狀況,也就是dp[i - 1][j] 或 dp[i][j - 1] 也就是說這兩個狀態組都代表已經忽略word1 以及word 2時,當前的狀況,那在這個基礎上再加1,也可以理解為在忽略word1的狀況下在刪除word2 就會是將word1、word2都刪除的狀況,也就是dp[i - 1][j] + 1。
  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    因為兩者都可以刪除,所以在初始話時,空字符串都是0,因為不用刪除,其他的部分則根據當前的位置,刪除不同數量的word即可以成為空字符串,也就是要刪除i 個或j個字,字符串才會為空

  4. 確定遍歷順序

    因為需要左上角的數據來進行遍歷,所以是由前往後。

代碼隨想錄思路

Code

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp (word1.size() + 1, vector<int>(word2.size() + 1, 0));for(int i = 0; i <= word1.size(); i++) dp[i][0] = i;for(int j = 0; j <= word2.size(); j++) dp[0][j] = j;for(int i = 1; i <= word1.size(); i++) {for(int j = 1; j <= word2.size(); j++) {if(word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1];else dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);}}return dp[word1.size()][word2.size()];}
};

72. 编辑距离 - 實作

思路

  1. 定義DP數組以及下標的含意

    i - 1 下標的word1以及 j - 1 下標的word2,要達到相同的子序列最少需要編輯多少次為dp[i][j]

  2. 遞推公式

    分成兩種狀態相同與不相同

    相同的話代表不用編輯,也就是dp[i - 1][j - 1]即為上一次不包含當前兩個數的狀況

    不相同的話有三種狀況,取最小的

    • 刪除\添加 word1
      • 代表不包含當前word1的狀況在加上一個刪除\添加的個數也就是dp[i - 1][j] + 1
    • 刪除\添加 word2
      • 代表不包含當前word2的狀況再加上1個刪除\添加數,也就是dp[i][j - 1] + 1
    • 替換
      • 代表不包含當前word1、word2的狀況加上一個操作,也就是dp[i - 1][j - 1] + 1
  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    當j - 1以及 i - 1的word1、word2需要初始化時,需要刪除i個或j個字符才會等於空字符

  4. 確定遍歷順序

    總共有四個遞推公式

    dp[i][j] = dp[i - 1][j - 1]

    dp[i][j] = dp[i - 1][j - 1] + 1

    dp[i][j] = dp[i - 1][j] + 1

    dp[i][j] = dp[i][j - 1] + 1

    因為需要左上角的數據來進行遍歷,所以是由前往後。

Code

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp (word1.size() + 1, vector<int>(word2.size() + 1));for(int i = 0; i <= word1.size(); i++) dp[i][0] = i;for(int j = 0; j <= word2.size(); j++) dp[0][j] = j;for(int i = 1; i <= word1.size(); i++) {for(int j = 1; j <= word2.size(); j++) {if(word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1];else dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;}}return dp[word1.size()][word2.size()];}
};

编辑距离总结篇

判斷子序列

定義: dp[i][j] 代表 i - 1 的s 和 j - 1 的t 相同子序列的長度為dp[i][j]

根據這個定義,我們可以知道當兩者相同時,長度要加一

如果不相等時,則可以視為忽略當下的t[j - 1]取t的前一個數也就是t[j - 2] → dp[i][j] = dp[i][j - 1]

不同的子序列

定義: dp[i][j]: 以i - 1為結尾s子序列當中,出現以j - 1為結尾t的個數為dp[i][j]

根據定義

  • 兩者相等時有兩種狀況

    我可以使用s[i - 1]也可以不使用s[i - 1] 因為定義是i - 1為結尾的s子序列中,出現以j - 1為結尾的t個數

    所以在使用s[i - 1]的狀況,我不用刪除任何元素,所以我的值會是dp[i - 1][j - 1]即上一次的狀況,

    如果不使用s[i - 1]的狀況,我等同於只需要不考慮s[i - 1] 但t[j - 1]仍然在,所以值會是dp[i - 1][j]

    相同時的轉移方程就會是dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

  • 兩者不相等時相當於s 要刪除元素,因為 s的字符串中,這個位置並沒有t的字串,所以要刪除

    如果是s要刪除元素,那就是取s[i - 2] 這個不包含s[ i -1]的最大值,但t是要比較的子序列,所以t不用動,也就是說這個dp[i][j]會是由s[i - 2]t[j - 1]所組成,所對應的dp數組是dp[i][j] = dp[i - 1][j]。

初始化:

dp[i][0] 一定都是1,因為把s全部刪除後出現空字符的個數就是一

dp[0][j] 因為s無論如何都無法變成t,所以都是0

dp[0][0] 空字符串s可以刪除0個元素變成空字符串t,所以等於1

兩個字符串的刪除操作

定義: i - 1 下標的word1以及 j - 1 下標的word2,要達到相同的子序列最少需要刪除多少次為dp[i][j]

根據這個定義轉移方程會有兩個狀況

  • 兩者相同

相同的話代表不用刪除,也就是dp[i - 1][j - 1]即為上一次不包含當前兩個數的狀況

  • 兩者不相同

不相同的話有三種狀況

  • 刪除word1
    • 代表不包含當前word1的狀況在加上一個刪除的個數也就是dp[i - 1][j] + 1
  • 刪除word2
    • 代表不包含當前word2的狀況再加上1個刪除數,也就是dp[i][j - 1] + 1
  • 刪除word1、word2
    • 代表要不包含word1以及word2的值,也就是dp[i - 1][j - 1] ,並加上刪除兩次,所以是dp[i - 1][j - 1] + 2
    • 但也可以想成取word1不存在的部分也就是dp[i - 1][j],並刪除word2,也就是dp[i - 1][j] + 1,反之也可以想成word2不存在。
  • 那因為我們要找出最少需要刪除多少次,所以就是取刪除狀況中最小的數值+1

狀態轉移方程就會是 dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + 1;

初始化的部分就是要如何將i - 1結尾的word1以及j - 1結尾的word2 刪除至空字符串,就會需要i, j 次的刪除次數才行。

編輯距離

定義: i - 1 下標的word1以及 j - 1 下標的word2,要達到相同的子序列最少需要操作多少次為dp[i][j]

這一題其實就是前面的部分,只是要想明白相同時要做甚麼、不相同時要做甚麼

如果相同,則不操作

不相同則需要找出最小的增、刪、替換的方案

增加跟刪除可以想成同一個操作數

  • 需要增刪word1時,都是取dp[i - 1][j] + 1
  • 需要增刪word2時,都是取dp[i][j - 1] + 1
  • 至於增刪word1、word2則跟之前一樣,可以簡化成上述的兩個式子
  • 需要替換word1或word2的話,則需要取這兩個都不存在的部分加上一次操作數也就是dp[i - 1][j - 1] + 1

所以得出四個轉移方程

if(word1[i - 1] == word2[j - 1])

dp[i][j] = dp[i - 1][j - 1];

else

dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;

總結


在編輯距離的題目當中,有個很重要的核心就是定義好dp[i][j]的定義,在根據這個定義,去推導出公式以及初始化的方式

其實前三題很重要的思維就是對於刪除的理解,在不同的定義上刪除的做法都不太一樣

判斷子序列

刪除是dp[i][j - 1],忽略前一個t

不同子序列

使用s[i - 1]的,我不用刪除任何元素,所以值會是dp[i - 1][j - 1]即上一次的狀況,

如果不使用s[i - 1]的狀況,我等同於只需要不考慮s[i - 1] 但t[j - 1]仍然在,所以值會是dp[i - 1][j]

相同時的轉移方程就會是dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

兩者不相等時相當於s 要刪除元素,因為 s的字符串中,這個位置並沒有t的字串,所以要刪除

如果是s要刪除元素,那就是取s[i - 2] 這個不包含s[ i -1]的最大值,但t是要比較的子序列,所以t不用動,也就是說這個dp[i][j]會是由s[i - 2]t[j - 1]所組成,所對應的dp數組是dp[i][j] = dp[i - 1][j]。

兩個字符串的刪除操作

  • 刪除word1
    • 代表不包含當前word1的狀況在加上一個刪除的個數也就是dp[i - 1][j] + 1
  • 刪除word2
    • 代表不包含當前word2的狀況再加上1個刪除數,也就是dp[i][j - 1] + 1
  • 刪除word1、word2
    • 代表要不包含word1以及word2的值,也就是dp[i - 1][j - 1] ,並加上刪除兩次,所以是dp[i - 1][j - 1] + 2

編輯距離

所謂的增刪基本上是同一個操作數,只是需要明確甚麼是替換,以及下標定義為何

  • 需要增刪word1時,都是取dp[i - 1][j] + 1
  • 需要增刪word2時,都是取dp[i][j - 1] + 1
  • 需要替換word1或word2的話,則需要取這兩個都不存在的部分加上一次操作數也就是dp[i - 1][j - 1] + 1

整體而言編輯距離透過這幾天的理解過後,透過這次的總結,對於這類題目有更深的了解了。

这篇关于代碼隨想錄算法訓練營|第五十八天|583. 两个字符串的删除操作、72. 编辑距离、编辑距离总结篇。刷题心得(c++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/331925

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�