深度学习 Day 16——利用卷神经网络实现咖啡豆的识别

2023-11-02 12:00

本文主要是介绍深度学习 Day 16——利用卷神经网络实现咖啡豆的识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习 Day 16——利用卷神经网络实现咖啡豆的识别

文章目录

  • 深度学习 Day 16——利用卷神经网络实现咖啡豆的识别
    • 一、前言
    • 二、我的环境
    • 三、前期工作
      • 1、导入依赖项并设置GPU
      • 2、导入数据集
      • 3、查看数据集
    • 四、数据预处理
      • 1、加载数据
      • 2、检查数据并可视化数据
      • 3、配置数据集并进行归一化处理
    • 五、构建VGG-16网络
    • 六、设置动态学习率、损失函数、优化器,指标为准确率
    • 七、训练模型
    • 八、可视化结果
    • 九、最后我想说

一、前言

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍦 参考文章:365天深度学习训练营-第7周:咖啡豆识别(训练营内部成员可读)
  • 🍖 原作者:K同学啊|接辅导、项目定制

在这里插入图片描述

因为种种原因,我已经差不多两个星期没有更新有关深度学习方面的博客了,因为我拿不到我这个性能好的电脑,手上只有一个轻薄本没有深度学习环境也带不动这些程序。

不过现在都解决了,可以接着开始学习了,本期我们承接上文,我们仍然学习的是RNN,本期我们将自己搭建VGG-16网络框架进行操作。

浪费了两个星期的时间,我们也不再废话了直接开始工作。

二、我的环境

  • 电脑系统:Windows 11
  • 语言环境:Python 3.8.5
  • 编译器:DataSpell 2022.2
  • 深度学习环境:TensorFlow 2.3.4
  • 显卡及显存:RTX 3070 8G

三、前期工作

1、导入依赖项并设置GPU

导入依赖项:

from tensorflow import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np

和之前一样,如果你GPU很好就只使用GPU进行训练,如果GPU不行就推荐使用CPU训练加GPU加速。

只使用GPU:

if gpus:gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")

使用CPU+GPU:

os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

2、导入数据集

data_dir = "E:\Deep_Learning\data\Day16"
data_dir = pathlib.Path(data_dir)

3、查看数据集

查看数据集内有多少张图片:

image_count = len(list(data_dir.glob('*/*.png')))print("图片总数为:",image_count)

运行的结果是:

图片总数为: 1200

从数据集内返回一张图片查看一下:

roses = list(data_dir.glob('Dark/*.png'))
PIL.Image.open(str(roses[0]))

在这里插入图片描述

四、数据预处理

1、加载数据

我们使用image_dataset_from_directory方法将我们本地的数据加载到tf.data.Dataset

中,并设置训练图片模型参数:

batch_size = 32
img_height = 224
img_width = 224

接下来加载数据:

train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)

然后我们再利用class_name输出我们本地数据集的标签,标签也就是对应数据所在的文件目录名:

class_names = train_ds.class_names
print(class_names)
['Dark', 'Green', 'Light', 'Medium']

2、检查数据并可视化数据

在可视化数据前,我们来检查一下我们的数据信息是否是正确的:

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
(32, 224, 224, 3)
(32,)

这是一批形状224x224x3的32张图片,我们将数据进行可视化看看:

plt.figure(figsize=(10, 4))  # 图形的宽为10高为5for images, labels in train_ds.take(1):for i in range(10):ax = plt.subplot(2, 5, i + 1)  plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")

在这里插入图片描述

3、配置数据集并进行归一化处理

AUTOTUNE = tf.data.experimental.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds   = val_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(val_ds))
first_image = image_batch[0]# 查看归一化后的数据
print(np.min(first_image), np.max(first_image)) 

打印结果是:

0.0 1.0

上面layers.experimental.preprocessing.Rescaling函数原型是:

tf.keras.layers.experimental.preprocessing.Rescaling(scale, offset=0.0, name=None, **kwargs
)

其中参数:

参数说明
scale浮点数,应用于输入的比例
offset浮点数,应用于输入的偏移量
name一个字符串,图层的名称

这里设置scale=1./255的作用是要将[0, 255]范围内的输入重新调整为范围[0, 1]内,也就是缩放层将像素标准化为[0,1],在后面打印的结果也看出来我们成功将像素标准化为[0,1]。

如果我们要将[0, 255]范围内的输入重新调整为范围[-1, 1]内,我们需要使通过设置scale=1./127.5, offset=-1来实现。

五、构建VGG-16网络

官方模型我在上一期博客中就用到过,训练非常的缓慢,不知道你们是不是和我一样的情况,在这里我们今天主要来试试我们自己搭建VGG-16网络。

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropoutdef VGG16(nb_classes, input_shape):input_tensor = Input(shape=input_shape)# 1st blockx = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)# 2nd blockx = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)# 3rd blockx = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)# 4th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)# 5th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)# full connectionx = Flatten()(x)x = Dense(4096, activation='relu',  name='fc1')(x)x = Dense(4096, activation='relu', name='fc2')(x)output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)model = Model(input_tensor, output_tensor)return modelmodel=VGG16(len(class_names), (img_width, img_height, 3))
model.summary()

打印的结果是:

Model: "functional_5"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_3 (InputLayer)         [(None, 224, 224, 3)]     0         
_________________________________________________________________
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
_________________________________________________________________
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________
flatten_2 (Flatten)          (None, 25088)             0         
_________________________________________________________________
fc1 (Dense)                  (None, 4096)              102764544 
_________________________________________________________________
fc2 (Dense)                  (None, 4096)              16781312  
_________________________________________________________________
predictions (Dense)          (None, 4)                 16388     
=================================================================
Total params: 134,276,932
Trainable params: 134,276,932
Non-trainable params: 0
_________________________________________________________________

六、设置动态学习率、损失函数、优化器,指标为准确率

# 设置初始学习率
initial_learning_rate = 1e-4lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps=30,      # 敲黑板!!!这里是指 steps,不是指epochsdecay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lrstaircase=True)# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate)model.compile(optimizer=opt,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])

七、训练模型

epochs = 20history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
Epoch 1/20
30/30 [==============================] - 13s 187ms/step - loss: 1.3438 - accuracy: 0.3208 - val_loss: 0.9648 - val_accuracy: 0.6750
Epoch 2/20......
30/30 [==============================] - 4s 137ms/step - loss: 0.0537 - accuracy: 0.9781 - val_loss: 0.1639 - val_accuracy: 0.9667
Epoch 19/20
30/30 [==============================] - 4s 138ms/step - loss: 0.0580 - accuracy: 0.9781 - val_loss: 0.1093 - val_accuracy: 0.9625
Epoch 20/20
30/30 [==============================] - 4s 136ms/step - loss: 0.0765 - accuracy: 0.9740 - val_loss: 0.1346 - val_accuracy: 0.9667

八、可视化结果

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

九、最后我想说

本次项目的结果我并没有运行出来,上面的结果是截取K老师的博客,供大家参考一下。

我也借这次博客来记录一下这个目前无法解决的问题,我自己的结果如下:

在这里插入图片描述

这个图跟K老师的完全不一样,代码跟K老师的一样,然后我还在本地跑了一遍K老师项目源码,源码都跑不动,跟K老师讨论了一会,K老师说他之前也遇见过类似的情况,那是3080显卡刚出来的时候,配置的环境没有错,代码也没错但是就是运行结果异常低下,他当时重装了系统解决了问题,我也不知道我的是不是重装系统也能结果,我觉得也有可是跟显卡驱动更新有关,总之这个层面的问题很麻烦,最近快要考试了加上事挺多的,就暂时不去折腾了,如果你们也遇见过类似的问题,可以说说你们的解决办法,谢谢!

这篇关于深度学习 Day 16——利用卷神经网络实现咖啡豆的识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/330459

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主