[论文解读]R2D2: Reliable and Repeatable Detector and Descriptor

2023-11-02 05:10

本文主要是介绍[论文解读]R2D2: Reliable and Repeatable Detector and Descriptor,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NeurIPS 2019
代码地址
会议视频

abstract

仅仅学习可重复并显著的特征点不够,显著的区域并不一定是有区分性的,因此这样可能损害描述子性能。因此,文中认为描述子应仅在具有高置信度的区域学习。文中方法在Hpatch和 Aachen Day-Night localization benchmark有较好的表现。

上图用棋盘图像显示了这样一个例子:每个角或色块都是可重复的,但由于单元格的重复,无法进行匹配。 在自然图像中,常见的纹理–树木的叶子,摩天大楼的窗户或海浪也都很突出,但很难匹配。

1. Introduction

在这项工作中,我们声称检测和描述是不可分割的关系,因为好的关键点不仅应该是可重复的,而且应该是具有区分度的。 因此,我们将检测和描述过程无缝地联合学习从而提高描述子的可靠性。本工作从这两方面得到一个confidence map并选择同时具有可重复和可区分的特征点,以此来提高matching pipeline性能。

更准确地说,我们的网络,如上图所示,输出密集的本地描述子(每个像素一个)以及两个相关的可重复性和可靠性置信度Maps。 两张Maps,一个估计关键点是可重复的,另一个则估计其描述子是可分别的。 最后,关键点取自这两张图响应最大化的位置。
为训练关键点检测器,我们采用了一种新的无监督损失函数,它鼓励了图像的重复性、稀疏性以及在图像的均匀分布。 对于局部描述子训练,它用listwise ranking loss训练,其利用基于近似平均精度(AP)的度量学习最新进展,而不是使用标准triplet or contrastive loss。我们学习一个可靠性置信度值,以预测哪些像素将具有高AP的描述子–既具有鉴别性,又具有鲁棒性,最终可以精确匹配。 我们在几个基准上的实验表明,我们的公式优雅地结合了检测器的可重复性和稀疏性与判别和鲁棒描述子。

3. Joint learning reliable and repeatable detectors and descriptors

3.1. Learning repeatability

正如以前的工作[LIFT、SuperPoint]中所观察到的,关键点的重复性是一个无法通过标准监督训练来解决的问题。 事实上,在这种情况下,使用监督训练本质上可以认为是学习一个现有的检测器,而不是发现更好检测器。 因此,我们将可重复性(repeatability)视为一项自我监督的任务,并对网络进行训练,使其S中局部最大值位置是自然图像变换的协变量,如视点或光照变化。

现在我们有两个repeatability map – S,分别从i,j图片得到。为了得到具有重复性的特征点,两个图片相同位置应当具有相同值。

P就是patch。但是这个公式有个问题,直接上S相同为一个常熟(eg 0)就直接最小化了,为此补上一个函数,使得p的值是有差异的:

因此最后的公式是:

3.2. Learning reliability

下面是计算AP的Loss,但是特别奇怪,反复看了几遍都没看懂这里Patch是从哪里来的,之前似乎没有这个概念,而且又是密集提取的descriptor,不太可能有patch。如果说有patch,那就是一个patch里所有的des加和?不是特别清楚,不过大体意思就是:
给定1 batch 正确图像对pair,使用卷积神经网络计算它们的描述子。然后从batch的所有patch描述子之间的距离计算出欧氏矩阵。 没给计算AP的公式,但说明了从【Local descriptors optimized for
average precision】论文里来的。

但是仅仅有AP是不够的,这个就是描述子的精度,还需要另外一项就是可靠性:

这个倒是好理解,R就是reliability map的输出,k是一个超参数–希望设置成AP的最小值。假设R要么0,要么1,最小化这个函数就是当k>ap时候R是0。这样相似的des在R map里就是0,也就达到了可区分性的目的。

最后总体来讲,结果挺好的,就是论文有点简略,训练过程那里越写越迷,不过好在有代码,而且代码本身很清晰。

这篇关于[论文解读]R2D2: Reliable and Repeatable Detector and Descriptor的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/328330

相关文章

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

解读静态资源访问static-locations和static-path-pattern

《解读静态资源访问static-locations和static-path-pattern》本文主要介绍了SpringBoot中静态资源的配置和访问方式,包括静态资源的默认前缀、默认地址、目录结构、访... 目录静态资源访问static-locations和static-path-pattern静态资源配置

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学