论文阅读——Imperceptible Adversarial Attack via Invertible Neural Networks

本文主要是介绍论文阅读——Imperceptible Adversarial Attack via Invertible Neural Networks,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Imperceptible Adversarial Attack via Invertible Neural Networks

作者:Zihan Chen, Ziyue Wang, Junjie Huang*, Wentao Zhao, Xiao Liu, Dejian Guan

解决的问题:虽然视觉不可感知性是对抗性示例的理想特性,但传统的对抗性攻击仍然会产生可追踪的对抗扰动。
代码:https://github.com/jjhuangcs/AdvINN
类型:黑盒 目标攻击,

摘要:

作者利用可逆神经网络(AdvINN)方法进行对抗性攻击,生成鲁棒且难以察觉的对抗性示例。AdvINN利用INN的信息保留属性,添加目标类的指定信息、删除与原始类别不同的信息来生成对抗样本。

引言部分引出对抗攻击示例

虽然对抗样本的存在可能会阻碍深度学习在风险敏感领域的应用,但它进一步促进了对深度学习鲁棒性的研究。

现有对抗样本的类别:

  • 在原始图像上添加扰动来生成对抗样本:FGSM系列的对抗攻击方法+混合其他类别的信息来生成对抗样本,这种方法可能会导致噪声被感知和图像存储容量的增加;
  • 在原始图像上丢弃部分信息来生成对抗样本,这种方法可能会影响目标攻击的性能。

方法整体概述

给定一张良性图像 x c l n x_{cln} xcln,其标签为 c c c,作者的目标是通过丢弃类 c c c的discriminant information和添加target image x t g t x_{tgt} xtgt的对抗细节,同时能够通过残差图像 x r x_r xr解析添加和丢弃的特征信息。方案整体包含Invertible Information Exchange Module (IIEM)和目标图像选择和学习(Target image selection and learning)两个模块,整体概述如下图所示:
在这里插入图片描述

  • IIEM模块 θ \theta θ f θ ( ⋅ ) {f_\theta }({\cdot}) fθ()的参数,由Invertible Information Exchange Module (IIEM), Target Image Learning Module (TILM) 和loss functions三个模块组成用于优化;IIEM由损失函数驱动,通过执行 x c l n {x_{cln }} xcln x t g t {x_{tgt}} xtgt的信息交换来生成对抗图像。由于IIEM的保留属性,输入图像 ( x c l n , x t g t ) ({x_{cln}},{x_{tgt}}) (xcln,xtgt)和输出图像 ( x a d v , x r ) ({x_{adv}},{x_{r}}) (xadv,xr)是相同的且 ( x a d v , x r ) = f θ − 1 ( x c l n , x t g t ) ({x_{adv}},{x_r})= {f_\theta }^{ - 1}({x_{cln }},{x_{tgt}}) (xadv,xr)=fθ1(xcln,xtgt)。AdvINN生成对抗样本的目标函数定义如下:
    在这里插入图片描述
    L a d v ( ⋅ ) \mathcal{L_{adv}}( \cdot ) Ladv()表示对抗损失, L r e c ( ⋅ ) \mathcal{L_{rec}}( \cdot ) Lrec()表示重构损失, λ a d v {\lambda _{adv}} λadv 表示正则参数, ε \varepsilon ε表示对抗扰动预算。

-target image选择: target image是对抗信息的来源,可以从highest confidence target image (HCT)、universal adversarial perturbation (UAP)或online learned classifier guided target image( CGT)中选择;

方法详细阐述:

Invertible Information Exchange Module (IIEM)

该模块主要包括离散小波变换和仿射偶尔两个模块,示意图如下:
在这里插入图片描述

  1. 离散小波变换:作者使用离散小波变换(正文使用的是哈儿小波变换)用以区分输入干净和目标图像分解为低频和高频成分。分解低频和高频特征有助于修改输入图像的高频成分,因而可以产生更不易察觉的对抗样本(注意:修改高频成分生成的对抗样本更不易被察觉。)离散小波变换 T ( ⋅ ) \mathcal{T}(\cdot) T()中,输入图像 x x x可被转换成小波域 T ( x ) \mathcal{T}(x) T(x),该域上包含一个低频子带特征和3个高频子带特征。在IIEM的输出端,逆离散小波变换 T − 1 ( ⋅ ) {\mathcal{T}^{-1}}( \cdot ) T1()用于重构特征到图像域。
  2. 仿射耦合模块:可逆信息交换模块由 M M M个Affine Coupling Blocks(仿射耦合模块)组成。 w c l n i w_{cln }^i wclni w t g t i w_{tgt}^i wtgti表示第 i i i个Affine Coupling Blocks的输入特征, w c l n i = T ( x c l n ) w_{cln }^i = T({x_{cln }}) wclni=T(xcln), w t g t i = T ( x t g t ) w_{tgt}^i = T({x_{tgt}}) wtgti=T(xtgt)。第 i i i个Affine Coupling Blocks的前向过程可表示为:
    在这里插入图片描述
    Θ \Theta Θ表示两个矩阵对应相乘, α \alpha α表示一个sigmod 函数乘以一个常数因子, ψ ( ⋅ ) , ρ ( ⋅ ) , η ( ⋅ ) \psi ( \cdot ),\rho ( \cdot ),\eta ( \cdot ) ψ(),ρ(),η()表示dense network architecture。给定第M个仿射耦合模块的输出,利用逆小波变换可获得对抗图像和残差图像: x a d v = T − 1 ( w c l n M ) , x r = T − 1 ( w t g t M ) {x_{adv}} = {T^{ - 1}}(w_{cln }^M),{x_r} = {T^{ - 1}}(w_{tgt}^M) xadv=T1(wclnM),xr=T1(wtgtM)
  3. 信息保留属性:由于DWI和IDWT的可逆性, ( w c l n M , w t g t M ) (w_{cln }^M, w_{tgt}^M) (wclnM,wtgtM)可以被保存在 ( x a d v , x r ) ({x_{adv}}, {x_r}) (xadv,xr) ( w c l n i − 1 , w t g t i − 1 ) (w_{cln }^{i - 1},w_{tgt}^{i - 1}) (wclni1,wtgti1)可以被保存在 ( w c ln ⁡ i , w t g t i ) (w_{c\ln }^{i },w_{tgt}^{i}) (wclni,wtgti)
    在这里插入图片描述
    IIEM是完全可逆,输出图像 ( x a d v , x r ) ({x_{adv}},{x_r}) (xadv,xr)和输入图像 ( x c l n , x t g t ) ({x_{cln}},{x_tgt}) (xcln,xtgt)包含相同的信息。他们之间的联系可表示如下:
    在这里插入图片描述
    σ \sigma σ表示干净图像上丢弃的信息, δ \delta δ表示添加到干净图像上目标图像的判别信息。

目标图像选择和学习(Target image selection and learning)

  1. 选取最高置信类的图像:选取最高置信的图像作为目标图像可能包含大量目标类的无关信息,例如背景纹理和其他的类的信息。这将会影响攻击成功率和寻优过程;
  2. 通用对抗扰动:作者沿用该方法,利用优化后的通用对抗摄动作为目标图像,加快收敛速度;
  3. 目标图像学习模块:该模块学习分类器引导的目标图像,而不是使用固定的图像作为目标图像。目标图像被设置为一个可学习的变量,该变量用一个恒定的图像初始化(即所有像素设置为0.5),然后根据攻击分类器的梯度进行更新。这样,自适应生成的目标图像可以嵌入目标类的更多判别信息,从而辅助生成对抗样例。

学习细节

整个网络的总体损失定义如下:
在这里插入图片描述
L a d v {\mathcal{L}_{adv}} Ladv表示对抗损失用于定位正确的优化方向和加速收敛速度,
在这里插入图片描述

L r e c {\mathcal{L}_{rec}} Lrec表示重构损失,用于约束对抗图像和良性图像相似,同时将修改主要应用于高频和不易察觉的内容,从而生成不易被察觉的对抗样本:
在这里插入图片描述

实验:

  • 数据集: ImageNet-1K
  • 基准:PGD,CW, Drop, PerC-AL,SSAH
  • 指标:感知性、攻击能力
  • 受害者模型:ResNet50
  • 感知性评估+目标攻击性能评估+鲁棒性评估(JPEG、bit-depth reduction、NRP and NRP_resG)+消融实验

这篇关于论文阅读——Imperceptible Adversarial Attack via Invertible Neural Networks的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/328242

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

【阅读文献】一个使用大语言模型的端到端语音概要

摘要 ssum框架(Speech Summarization)为了 从说话人的语音提出对应的文本二题出。 ssum面临的挑战: 控制长语音的输入捕捉 the intricate cross-mdoel mapping 在长语音输入和短文本之间。 ssum端到端模型框架 使用 Q-Former 作为 语音和文本的中介连接 ,并且使用LLMs去从语音特征正确地产生文本。 采取 multi-st