pandas 实战:分析三国志人物

2023-11-02 03:59

本文主要是介绍pandas 实战:分析三国志人物,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

背景

Pandas 是 Python 的一个工具库,用于数据分析。由 AQR Capital Management 于 2008 年 4 月开发,2009 年开源,最初被作为金融数据分析工具而开发出来。Pandas 名称来源于 panel data(面板数据)和 Python data analysis(Python 数据分析)。适用于金融、统计等数据分析领域。

特点:两大数据结构

Series 和 DataFrame
(1)Series:一维数据(列+索引)

pandas.Series(['东汉', '马腾', '?', 212], index=['国家', '姓名', '出生年份', '逝世年份'])

series

(2)DataFrame:二维数据(表格:多个列+行/列索引)
Series 和 DataFrame

pandas.DataFrame([['东汉', 300],['魏国', 800],['蜀国', 400],['吴国', 600],['西晋', 1000]
], columns=['国家', '国力'])

dataframe

安装

如果你使用的是数据科学的 Python 发行版:Anaconda,可以使用 conda 安装

conda install pandas

如果是普通的 Python 环境,可以使用 pip 安装

pip install pandas

实战

我们先看看数据长啥样,数据存在 sanguo.csv 文档中

$ head sanguo.csv

head

(1)导入模块

import pandas as pd

(2)读取 csv 数据

# 当前目录下的 sanguo.csv 文件,na_values 指定哪些值为空
df = pd.read_csv('./sanguo.csv', na_values=['na', '-', 'N/A', '?'])

1)查看数据

# 查看前 5 条
df.head(5)
# NaN 为空值

df.head()

# 查看后 5 条
df.tail(5)

df.tail()

2)查看数据概况

df.dtypes
# 查看数据类型

dtypes

df.info()
# 有 25 行,5 列
# 各列的名称(kindom、name、birth、die、character)、非空数目、数据类型

df.info()

df.describe()
# 查看数值型列统计值:总数、平均值、标准差、最小值、25%/50%/75% 分位数、最大值

df.describe

3)数据操作
设置列名

df.columns = ['国家', '姓名', '出生年份', '逝世年份', '角色']
df.head()

设置列名

添加新列

# 计算年龄
df['年龄'] = df['逝世年份'] - df['出生年份']
df.head(10)

添加新列
计算列平均值、中位数、众数、最/小值

功能函数
平均值df['年龄'].mean()50.57142857142857
中位数df['年龄'].median()53.0
众数df['年龄'].mode()72.0
最大值df['年龄'].max()72.0
最小值df['年龄'].min()12.0

列筛选

# 筛选年轮小于 50 的数据
df[df['年龄'] < 50]

筛选数据

# 筛选曹姓的数据
df[df['姓名'].str.startswith('曹')]

筛选数据

分组

df.groupby('国家')['姓名'].count()
# 类似于 SQL: SELECT 国家, COUNT(姓名) FROM x GROUP BY 国家

分组
apply 函数

df['状态'] = df['年龄'].apply(lambda x: '长寿' if isinstance(x, (int, float)) and x > 50 else '一般')
df.head()

apply
取数据:loc、iloc

df.loc[4]取第 5 行数据(索引从 0 开始)loc
df.loc[4:5]取第 5~6 行数据loc
df.loc[4, '姓名']
df.iloc[4, 1]
取第 5 行姓名列
或第 5 行第 2 列
loc
df.loc[4, ['姓名', '年龄']]
df.iloc[4, [1, 5]]
取第 5 行姓名、年龄列
或第 5 行第 2 列、第 6 列
loc
df.loc[4:5, ['姓名', '年龄']]
df.iloc[[4, 5], [1, 5]]
df.iloc[4:6, [1, 5]]
取第 5~6 行姓名、年龄列
或取第 5~6 行第 2 列、第 6 列
loc
df.iloc[4:9, 1:4]取 5~10 列第 2~5 列iloc

追加、合并数据
concat

# 创建列
newpeople = pd.Series(['东汉', '马腾', '?', 212, '?'], index=['国家', '姓名', '出生年份', '逝世年份', '年龄'])# 将 Series 转为 DataFrame,并对 DataFrame 转置(列转行)
newpeople = newpeople.to_frame().T# 追加行(axis=0),重置索引(ignore_index=True)
df2 = pd.concat([df, newpeople], axis=0, ignore_index=True)
df2.tail()

追加数据
merge

# 创建表格
kindom_power = pd.DataFrame([['东汉', 300],['魏国', 800],['蜀国', 400],['吴国', 600],['西晋', 1000]
], columns=['国家', '国力'])# 按国家列进行两个表格(左 df,右 kindom_power)合并
df3 = pd.merge(left=df, right=kindom_power, on='国家')
df3.head(10)

merge
4)导出数据

# 写入 sanguo_result.csv 中,不输出索引值
df.to_csv('sanguo_result.csv', index=False)

csv

参考

  • https://pandas.pydata.org/
  • https://www.runoob.com/pandas/pandas-tutorial.html
  • https://github.com/xchenhao/code-notes/blob/master/data/sanguo.csv sanguo.csv 数据

这篇关于pandas 实战:分析三国志人物的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/327961

相关文章

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java实战之利用POI生成Excel图表

《Java实战之利用POI生成Excel图表》ApachePOI是Java生态中处理Office文档的核心工具,这篇文章主要为大家详细介绍了如何在Excel中创建折线图,柱状图,饼图等常见图表,需要的... 目录一、环境配置与依赖管理二、数据源准备与工作表构建三、图表生成核心步骤1. 折线图(Line Ch

解读Pandas和Polars的区别及说明

《解读Pandas和Polars的区别及说明》Pandas和Polars是Python中用于数据处理的两个库,Pandas适用于中小规模数据的快速原型开发和复杂数据操作,而Polars则专注于高效数据... 目录Pandas vs Polars 对比表使用场景对比Pandas 的使用场景Polars 的使用

Java使用Tesseract-OCR实战教程

《Java使用Tesseract-OCR实战教程》本文介绍了如何在Java中使用Tesseract-OCR进行文本提取,包括Tesseract-OCR的安装、中文训练库的配置、依赖库的引入以及具体的代... 目录Java使用Tesseract-OCRTesseract-OCR安装配置中文训练库引入依赖代码实

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前