0基础学习PyFlink——事件时间和运行时间的窗口

2023-11-01 20:36

本文主要是介绍0基础学习PyFlink——事件时间和运行时间的窗口,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大纲

  • 定制策略
  • 运行策略
  • Reduce
  • 完整代码
  • 滑动窗口案例
  • 参考资料

在 《0基础学习PyFlink——时间滚动窗口(Tumbling Time Windows)》一文中,我们使用的是运行时间(Tumbling ProcessingTimeWindows)作为窗口的参考时间:

    reduced=keyed.window(TumblingProcessingTimeWindows.of(Time.milliseconds(2))) \.apply(SumWindowFunction(),Types.TUPLE([Types.STRING(), Types.INT()]))

而得到的结果也是不稳定的。
在这里插入图片描述
这是因为每次运行时,CPU等系统资源的繁忙程度是不一样的,这就影响了最后的运行结果。
为了让结果稳定,我们可以不依赖运行时间(ProcessingTime),而使用不依赖于运行环境,只依赖于数据的事件时间(EventTime)。
一般,我们需要大数据处理的数据,往往存在一个字段用于标志该条数据的“顺序”。这个信息可以是单调递增的ID,也可以是不唯一的时间戳。我们可以将这类信息看做事件发生的时间。
那如何让输入的数据中的“事件时间”参与到窗口时长的计算中呢?这儿就要引入Watermark(水印)的概念。
假如我们把数据看成一张纸上的内容,水印则是这张纸的背景。它并不影响纸上内容的表达,只是系统要用它来做更多的事情。
将数据中表达“顺序”的数据转换成“时间”,我们可以使用水印单调递增时间戳分配器

定制策略

class ElementTimestampAssigner(TimestampAssigner):def extract_timestamp(self, value, record_timestamp)-> int:return int(value[1])……       # define the watermark strategywatermark_strategy = WatermarkStrategy.for_monotonous_timestamps() \.with_timestamp_assigner(ElementTimestampAssigner())

for_monotonous_timestamps会分配一个水印单调递增时间戳分配器,然后使用with_timestamp_assigner告知输入数据中“顺序”字段的值。这样系统就会根据这个字段的值生成一个单调递增的时间戳。这个时间戳相对顺序就和输入数据一样,是稳定的。
比如上图中,会分别用2,1,4,3……来计算时间戳。

运行策略

然后对原始数据使用该策略,这样source_with_wartermarks中的数据就包含了时间戳。

source_with_wartermarks=source.assign_timestamps_and_watermarks(watermark_strategy)

Reduce

这次我们使用TumblingEventTimeWindows,即事件时间(EventTime)窗口,而不是运行时间(ProcessingTime)窗口。

     # keyingkeyed=source_with_wartermarks.key_by(lambda i: i[0]) # reducingreduced=keyed.window(TumblingEventTimeWindows.of(Time.milliseconds(2))) \.apply(SumWindowFunction(),Types.TUPLE([Types.STRING(), Types.INT()]))

(‘E’, 1) TimeWindow(start=0, end=2)
(‘E’, 3) (‘E’, 2) TimeWindow(start=2, end=4)
(‘E’, 4) (‘E’, 5) TimeWindow(start=4, end=6)
(‘E’, 6) (‘E’, 7) TimeWindow(start=6, end=8)
(‘E’, 8) (‘E’, 9) TimeWindow(start=8, end=10)
(‘E’, 10) TimeWindow(start=10, end=12)
(E,1)
(E,2)
(E,2)
(E,2)
(E,2)
(E,1)

多运行几次,结果是稳定输出的。
我们再多关注下TimeWindow中的start和end,它们是不重叠的、步长为2、左闭右开的区间。这个符合滚动窗口特性。

完整代码

from typing import Iterablefrom pyflink.common import Types, Time, WatermarkStrategy
from pyflink.datastream import StreamExecutionEnvironment, RuntimeExecutionMode, WindowFunction
from pyflink.datastream.window import TumblingEventTimeWindows, TimeWindow, TumblingProcessingTimeWindows, SlidingProcessingTimeWindows
from pyflink.common.watermark_strategy import TimestampAssignerclass ElementTimestampAssigner(TimestampAssigner):def extract_timestamp(self, value, record_timestamp)-> int:return int(value[1])class SumWindowFunction(WindowFunction[tuple, tuple, str, TimeWindow]):def apply(self, key: str, window: TimeWindow, inputs: Iterable[tuple]):print(*inputs, window)return [(key,  len([e for e in inputs]))]word_count_data = [("E",3),("E",1),("E",4),("E",2),("E",6),("E",5),("E",7),("E",8),("E",9),("E",10)]def word_count():env = StreamExecutionEnvironment.get_execution_environment()env.set_runtime_mode(RuntimeExecutionMode.STREAMING)# write all the data to one fileenv.set_parallelism(1)source_type_info = Types.TUPLE([Types.STRING(), Types.INT()])# define the source# mappgingsource = env.from_collection(word_count_data, source_type_info)# source.print()# define the watermark strategywatermark_strategy = WatermarkStrategy.for_monotonous_timestamps() \.with_timestamp_assigner(ElementTimestampAssigner())source_with_wartermarks=source.assign_timestamps_and_watermarks(watermark_strategy)# keyingkeyed=source_with_wartermarks.key_by(lambda i: i[0]) # reducingreduced=keyed.window(TumblingEventTimeWindows.of(Time.milliseconds(2))) \.apply(SumWindowFunction(),Types.TUPLE([Types.STRING(), Types.INT()]))# # define the sinkreduced.print()# submit for executionenv.execute()if __name__ == '__main__':word_count()

滑动窗口案例

from typing import Iterablefrom pyflink.common import Types, Time, WatermarkStrategy
from pyflink.datastream import StreamExecutionEnvironment, RuntimeExecutionMode, WindowFunction
from pyflink.datastream.window import SlidingEventTimeWindows, TimeWindow
from pyflink.common.watermark_strategy import TimestampAssignerclass ElementTimestampAssigner(TimestampAssigner):def extract_timestamp(self, value, record_timestamp)-> int:return int(value[1])class SumWindowFunction(WindowFunction[tuple, tuple, str, TimeWindow]):def apply(self, key: str, window: TimeWindow, inputs: Iterable[tuple]):print(*inputs, window)return [(key,  len([e for e in inputs]))]word_count_data = [("E",3),("E",1),("E",4),("E",2),("E",6),("E",5),("E",7),("E",8),("E",9),("E",10)]def word_count():env = StreamExecutionEnvironment.get_execution_environment()env.set_runtime_mode(RuntimeExecutionMode.STREAMING)# write all the data to one fileenv.set_parallelism(1)source_type_info = Types.TUPLE([Types.STRING(), Types.INT()])# define the source# mappgingsource = env.from_collection(word_count_data, source_type_info)# source.print()# define the watermark strategywatermark_strategy = WatermarkStrategy.for_monotonous_timestamps() \.with_timestamp_assigner(ElementTimestampAssigner())source_with_wartermarks=source.assign_timestamps_and_watermarks(watermark_strategy)# keyingkeyed=source_with_wartermarks.key_by(lambda i: i[0]) # reducingreduced=keyed.window(SlidingEventTimeWindows.of(Time.milliseconds(2), Time.milliseconds(1))) \.apply(SumWindowFunction(),Types.TUPLE([Types.STRING(), Types.INT()]))# # define the sinkreduced.print()# submit for executionenv.execute()if __name__ == '__main__':word_count()

(‘E’, 1) TimeWindow(start=0, end=2)
(‘E’, 1) (‘E’, 2) TimeWindow(start=1, end=3)
(‘E’, 3) (‘E’, 2) TimeWindow(start=2, end=4)
(‘E’, 3) (‘E’, 4) TimeWindow(start=3, end=5)
(‘E’, 4) (‘E’, 5) TimeWindow(start=4, end=6)
(‘E’, 6) (‘E’, 5) TimeWindow(start=5, end=7)
(‘E’, 6) (‘E’, 7) TimeWindow(start=6, end=8)
(‘E’, 7) (‘E’, 8) TimeWindow(start=7, end=9)
(‘E’, 8) (‘E’, 9) TimeWindow(start=8, end=10)
(‘E’, 9) (‘E’, 10) TimeWindow(start=9, end=11)
(‘E’, 10) TimeWindow(start=10, end=12)
(E,1)
(E,2)
(E,2)
(E,2)
(E,2)
(E,2)
(E,2)
(E,2)
(E,2)
(E,2)
(E,1)

通过TimeWindow的信息,我们看到这是一个步长为1、长度为2左闭右开的窗口。这个符合滑动窗口特点。

在这里插入图片描述

参考资料

  • https://nightlies.apache.org/flink/flink-docs-release-1.18/zh/docs/dev/datastream/event-time/built_in/
  • https://nightlies.apache.org/flink/flink-docs-release-1.18/zh/docs/learn-flink/streaming_analytics/

这篇关于0基础学习PyFlink——事件时间和运行时间的窗口的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/325581

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

禁止平板,iPad长按弹出默认菜单事件

通过监控按下抬起时间差来禁止弹出事件,把以下代码写在要禁止的页面的页面加载事件里面即可     var date;document.addEventListener('touchstart', event => {date = new Date().getTime();});document.addEventListener('touchend', event => {if (new

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学