MATLAB实时脚本分析系统的类冲激响应,并绘制伯德图

2023-11-01 12:51

本文主要是介绍MATLAB实时脚本分析系统的类冲激响应,并绘制伯德图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目的

这里使用自动驾驶车的转向角度作为输入模拟冲激信号
输出分别为:横向加速度,yaw rate和推定的侧滑角
通过对输入和输出进行傅里叶变换,求出频域的比例关系后绘制伯德图。以观察车辆的传递特性
*由于包含数据的机密性分析结果就不放实际数据图片了,只是作为学习笔记分享一下代码的思路

1. 导入数据

使用CAN信号的记录文件并转换为.mat数据文件后进行分析,每一个数据对应了一个采样时间文件,其中的数据是一一对应的。

close all
clear variables%选择信号文件
filename = 'ImpulseSignal.mat';
load(filename);%测试用信号 V = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
S = VehicleSpeed_t1;            %车速(测试用)
StAngle = SteerAngle_t2;        %前轮方向转角(输入)
lAcc = Acc_t3;                  %横向加速度(输出)
Yaw = YawRate_t4;               %yaw rate(输出)
SlAngle = SlipAngle_t5;         %推定侧滑角度(输出)

1.1 参数设定

  • 有效信号的分割点信息
  • 我这里使用的是等间距的冲激信号作为输入,如下图所示,需要将每一个独立的信号分割后进行傅里叶分析
    在这里插入图片描述
%有效信号的分割点信息
Seginfo_test = [350 240 3];               %[有效信号的起始点,冲激信号间隔,冲激信号总数]
Seginfo_1 = [];
seginfo = Seginfo_test;                   
n = seginfo(3);

读取数据部分和相应的时间戳部分,如果输入和输出的采样时间不一致需要将高频数据降采样处理。这里我的转向角输入t2和侧滑角输出t5的采样时间是其他信号的两倍,所以降采样使其保持一致。
为了生成预备数据,代码从这里开始执行到第二章FFT,直到最后全部数据生成后再向后执行。

Y_data = 'SlAngle'
if strcmp(Y_data,'StAngle')Y = downsample(StAngle,2);T = downsample(t2,2);dataid = 1;elseif strcmp(Y_data,'lAcc')Y = lAcc;T = t3;dataid = 2;elseif strcmp(Y_data,'Yaw')Y = Yaw;T = t4;dataid = 3;elseif strcmp(Y_data,'SlAngle')Y = downsample(SlAngle,2);T = downsample(t5,2);dataid = 4;
elseY = S;T = t2;dataid = 0;
endt_sample = mean(diff(T))    % Sampling perios/time
Fs = round(1/t_sample)      % Sampling frequency                    
L = size(Y,1)               % Length of signal          

1.2 初始信号

plot(T(1:L),Y(1:L))         %绘制初始信号图
title("转向角")
xlabel("t (seconds)")
ylabel("S(t)")

在这里插入图片描述

1.3 分割信号

%按照分割点的信息自动求出时间切片和对应的index
start_id=round(seginfo(1)/(t_sample/0.01));
interval=round(seginfo(2)/(t_sample/0.01));
for ii=1:nr=start_id+(ii-1)*interval:start_id+ii*interval-1;time_slice{ii}=T(r);time_index{ii}=(r)';
end
1.3a 有效信号部分样本

impulse_id=1;                                                   %选定N个有效冲激信号中的第impulse_id个绘制图形
%Y_m = mean(Y(time_index{impulse_id}))                          %信号取平均的两种方法
%Y_d = detrend(Y(time_index{impulse_id}), 0);
figure(1);
clf;
plot(time_slice{impulse_id},Y(time_index{impulse_id}),'--')     %绘制初始信号
hold on
plot(time_slice{impulse_id},Y(time_index{impulse_id})-Y_m)      %绘制取平均后的信号title(['handle angle ID:',num2str(impulse_id)])
xlabel("t (seconds)")
ylabel(['S',num2str(impulse_id),'(t)'])

在这里插入图片描述

1.3b 生成全部的冲激信号切片,并按顺序保存
for ii=1:n%Ym = mean(Y(time_index{ii}));    %这里我不取平均了,因为对傅里叶分析的结果没有影响S_x{ii} = time_slice{ii};%S_y{ii} = Y(time_index{ii}-Y_m);S_y{ii} = Y(time_index{ii}); 
end

1.4 快速傅里叶变换(FFT, Fast Fourier Transform)

Sf=fft(S_y{impulse_id});              %FFT
Li = size(S_y{impulse_id},1)          %信号长度
P2 = Sf/Li;
P_Sf = P2(1:Li/2);
P_Sf(2:end-1) = 2*P_Sf(2:end-1);      %取前半部分数据

作图

figure(2);
clf;Px = (Fs*(0:(Li/2)-1)/Li)';             %根据奈奎斯特频率取(Fs/2)
plot(Px,P_Sf)
%xlim([0 Fs/2]);                       
%plot(Fs*(0:(Li/2))/Li,P1) 
title("Fast Fourier Transform of S(f)")
xlabel("f (Hz)")
ylabel(['FFT[S',num2str(impulse_id),'(t)]=S',num2str(impulse_id),'(f)'])

在这里插入图片描述

2.FFT数据生成

for x=1:nFFT = fft(S_y{x});L = size(S_y{x},1);FFT = FFT/L;FFT = FFT(1:L/2);FFT(2:end-1) = 2*FFT(2:end-1);if dataid == 1Res_StAngle{x} = FFT;            %转向角(输入)elseif dataid == 2Res_lAcc{x} = FFT;               %横向加速度(输出)elseif dataid == 3Res_Yaw{x} = FFT;                %Yawrate(输出)elseif dataid == 4Res_SlAngle{x} = FFT;            %侧滑角(输出)end
end

3.生成比例数据

  • 输入和输出的比例反映了系统的响应特征,也就是传递函数
  • 我们可以利用得到的特征数据和标准模型进行对比,从而观察出外界因素对系统响应的影响
for x=1:nRes_lAcc_R{x} = Res_lAcc{x}./Res_StAngle{x};Res_Yaw_R{x} = Res_Yaw{x}./Res_StAngle{x};Res_SlAngle_R{x} = Res_SlAngle{x}./Res_StAngle{x};
endRes_lAcc_sum = 0;
Res_Yaw_sum = 0;
Res_SlAngle_sum = 0;for i=1:n   Res_lAcc_sum = Res_lAcc_sum + Res_lAcc_R{i};Res_Yaw_sum = Res_Yaw_sum + Res_Yaw_R{i};Res_SlAngle_sum = Res_SlAngle_sum + Res_SlAngle_R{i};
end%计算所有冲激响应的均值
Res_lAcc_mean = Res_lAcc_sum/n;
Res_Yaw_mean = Res_Yaw_sum/n;
Res_SlAngle_mean = Res_SlAngle_sum/n;

4.結果

4.1 转向角(输入)→横向加速度(输出1)

*由于数据的机密性这里开始就不放图片了

figure(3);
clf;
ax = (Fs*(0:(Li/2)-1)/Li)';subplot(2,1,1);
semilogx(ax,20*log10(abs(Res_lAcc_mean))); grid on;
title("转向角→横向加速度")
%xlabel('f (Hz)')
ylabel('Gain[dB]')subplot(2,1,2);
semilogx(ax, 180/pi*angle(Res_lAcc_mean)); grid on;
xlabel('f (Hz)')
ylabel('相位[deg]')

4.2 转向角→yawrate(输出2)

figure(4);
clf;subplot(2,1,1);
semilogx(ax,20*log10(abs(Res_Yaw_mean))); grid on;
title("转向角→yawrate")
ylabel('Gain[dB]')
subplot(2,1,2);
semilogx(ax,180/pi*angle(Res_Yaw_mean)); grid on;
xlabel('f (Hz)')
ylabel('相位[deg]')

4.3 转向角→侧滑角(输出3)

figure(5);
clf;subplot(2,1,1);
semilogx(ax,20*log10(abs(Res_SlAngle_mean))); grid on;
title("转向角→侧滑角")
ylabel('Gain[dB]')subplot(2,1,2);
semilogx(ax,180/pi*angle(Res_SlAngle_mean)); grid on;
xlabel('f (Hz)')
ylabel('相位[deg]')
  • 20230630完

这篇关于MATLAB实时脚本分析系统的类冲激响应,并绘制伯德图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/323117

相关文章

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

Java调用Python脚本实现HelloWorld的示例详解

《Java调用Python脚本实现HelloWorld的示例详解》作为程序员,我们经常会遇到需要在Java项目中调用Python脚本的场景,下面我们来看看如何从基础到进阶,一步步实现Java与Pyth... 目录一、环境准备二、基础调用:使用 Runtime.exec()2.1 实现步骤2.2 代码解析三、

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Linux查询服务器系统版本号的多种方法

《Linux查询服务器系统版本号的多种方法》在Linux系统管理和维护工作中,了解当前操作系统的版本信息是最基础也是最重要的操作之一,系统版本不仅关系到软件兼容性、安全更新策略,还直接影响到故障排查和... 目录一、引言:系统版本查询的重要性二、基础命令解析:cat /etc/Centos-release详

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

更改linux系统的默认Python版本方式

《更改linux系统的默认Python版本方式》通过删除原Python软链接并创建指向python3.6的新链接,可切换系统默认Python版本,需注意版本冲突、环境混乱及维护问题,建议使用pyenv... 目录更改系统的默认python版本软链接软链接的特点创建软链接的命令使用场景注意事项总结更改系统的默