【小白必看】Python爬取NBA球员数据示例

2023-11-01 12:10

本文主要是介绍【小白必看】Python爬取NBA球员数据示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 导入需要的库和模块
  • 设置请求头和请求地址
  • 发送HTTP请求并获取响应
  • 处理响应结果
  • 解析数据
  • 将结果保存到文件
  • 完整代码
    • 详细解析
  • 运行效果
  • 结束语

在这里插入图片描述

前言

使用 Python 爬取 NBA 球员数据的示例代码。通过发送 HTTP 请求,解析 HTML 页面,然后提取出需要的排名、姓名、球队和得分信息,并将结果保存到文件中。

导入需要的库和模块

在这里插入图片描述

import requests
from lxml import etree
  • 使用requests库发送HTTP请求。
  • 使用lxml库进行HTML解析。

设置请求头和请求地址

在这里插入图片描述

url = 'https://nba.hupu.com/stats/players'
headers ={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.70 Safari/537.36'
}
  • 设置请求头信息,包括用户代理(User-Agent)。
  • 设置请求的地址为’https://nba.hupu.com/stats/players’。

发送HTTP请求并获取响应

在这里插入图片描述

resp = requests.get(url, headers=headers)
  • 使用requests库发送HTTP GET请求,并传入请求地址和请求头信息。
  • 将返回的响应保存在变量resp中。

处理响应结果

在这里插入图片描述

e = etree.HTML(resp.text)
  • 使用etree.HTML函数将返回的响应文本解析为一个可操作的HTML元素树对象。
  • 将解析后的结果保存在变量e中。

解析数据

在这里插入图片描述

nos = e.xpath('//table[@class="players_table"]//tr/td[1]/text()')
names = e.xpath('//table[@class="players_table"]//tr/td[2]/a/text()')
teams = e.xpath('//table[@class="players_table"]//tr/td[3]/a/text()')
scores = e.xpath('//table[@class="players_table"]//tr/td[4]/text()')
  • 使用XPath表达式从HTML元素树中提取需要的数据。
  • 分别将排名(nos)、姓名(names)、球队(teams)和得分(scores)保存在对应的变量中。

将结果保存到文件

with open('nba.txt', 'w', encoding='utf-8') as f:for no, name, team, score in zip(nos, names, teams, scores):f.write(f'排名:{no} 姓名:{name}  球队:{team} 得分:{score}\n')
  • 打开一个文件nba.txt,以写入模式(‘w’)进行操作,编码方式为UTF-8。
  • 使用zip函数同时遍历排名、姓名、球队和得分,将它们合并成一个元组。
  • 将每一行的数据按照指定格式写入文件中。

完整代码

# 引入 requests 库,用于发送 HTTP 请求
import requests
# 引入 lxml 库,用于解析 HTML
from lxml import etree# 设置请求的地址
url = 'https://nba.hupu.com/stats/players'
# 设置请求头信息,包括用户代理(User-Agent)
headers ={ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.70 Safari/537.36'
}# 发送HTTP GET请求,并传入请求地址和请求头信息,将返回的响应保存在变量resp中
resp = requests.get(url, headers=headers)# 使用etree.HTML函数将返回的响应文本解析为一个可操作的HTML元素树对象
e = etree.HTML(resp.text)# 使用XPath表达式从HTML元素树中提取需要的数据
nos = e.xpath('//table[@class="players_table"]//tr/td[1]/text()')
names = e.xpath('//table[@class="players_table"]//tr/td[2]/a/text()')
teams = e.xpath('//table[@class="players_table"]//tr/td[3]/a/text()')
scores = e.xpath('//table[@class="players_table"]//tr/td[4]/text()')# 打开一个文件`nba.txt`,以写入模式('w')进行操作,编码方式为UTF-8
with open('nba.txt', 'w', encoding='utf-8') as f:# 使用zip函数同时遍历排名、姓名、球队和得分,将它们合并成一个元组for no, name, team, score in zip(nos, names, teams, scores):# 将每一行的数据按照指定格式写入文件中f.write(f'排名:{no} 姓名:{name}  球队:{team} 得分:{score}\n')

详细解析

# pip install requests
import requests

导入 requests 库,该库用于发送 HTTP 请求。

# pip install lxml
from lxml import etree

导入 lxml 库,该库用于解析 HTML。

# 发送的地址
url = 'https://nba.hupu.com/stats/players'

设置需要发送请求的地址。

headers ={ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.70 Safari/537.36'}

设置请求头信息,包括用户代理(User-Agent)。这个信息告诉服务器我们的请求是从一个浏览器发出的,而不是爬虫,这样可以避免被反爬虫机制阻止。

# 发送请求
resp = requests.get(url,headers = headers)

使用 requests.get 方法发送 HTTP GET 请求,并传入请求地址和请求头信息。将返回的响应保存在变量 resp 中。

e = etree.HTML(resp.text)

使用 etree.HTML 函数将返回的响应文本解析为一个可操作的 HTML 元素树对象。etree.HTML 接受一个字符串类型的参数,这里使用 resp.text 来获取响应的文本内容。

nos = e.xpath('//table[@class="players_table"]//tr/td[1]/text()')
names = e.xpath('//table[@class="players_table"]//tr/td[2]/a/text()')
teams = e.xpath('//table[@class="players_table"]//tr/td[3]/a/text()')
scores = e.xpath('//table[@class="players_table"]//tr/td[4]/text()')

使用 XPath 表达式从 HTML 元素树中提取需要的数据。这里分别使用了四个 XPath 表达式来提取排名、姓名、球队和得分的数据,并将它们分别保存在 nosnamesteamsscores 变量中。

with open('nba.txt','w',encoding='utf-8') as f:for no,name,team,score in zip(nos,names,teams,scores):f.write(f'排名:{no} 姓名:{name}  球队:{team} 得分:{score}\n')

以写入模式(‘w’)打开一个名为 nba.txt 的文件,并使用 UTF-8 编码。然后,使用 zip 函数同时遍历排名、姓名、球队和得分,将它们合并成一个元组。通过循环遍历每个元组,将每行的数据按照指定格式写入文件中。

这样,代码就实现了对 NBA 球员数据进行爬取,并将结果保存到 nba.txt 文件中。

运行效果

在这里插入图片描述

结束语

通过本文的示例代码,你可以学习使用Python爬取NBA球员数据的方法。我们使用了requests库发送HTTP请求,lxml库进行HTML解析,以及XPath表达式提取需要的数据。最后将结果保存到文件中。这个示例可以帮助你了解爬虫的基本原理和操作步骤,同时也能够获取到有关NBA球员的数据。希望本文对你理解和掌握Python爬虫技术有所帮助。

这篇关于【小白必看】Python爬取NBA球员数据示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322860

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

MySQL中between and的基本用法、范围查询示例详解

《MySQL中betweenand的基本用法、范围查询示例详解》BETWEENAND操作符在MySQL中用于选择在两个值之间的数据,包括边界值,它支持数值和日期类型,示例展示了如何使用BETWEEN... 目录一、between and语法二、使用示例2.1、betwphpeen and数值查询2.2、be

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra