【小白必看】Python爬取NBA球员数据示例

2023-11-01 12:10

本文主要是介绍【小白必看】Python爬取NBA球员数据示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 导入需要的库和模块
  • 设置请求头和请求地址
  • 发送HTTP请求并获取响应
  • 处理响应结果
  • 解析数据
  • 将结果保存到文件
  • 完整代码
    • 详细解析
  • 运行效果
  • 结束语

在这里插入图片描述

前言

使用 Python 爬取 NBA 球员数据的示例代码。通过发送 HTTP 请求,解析 HTML 页面,然后提取出需要的排名、姓名、球队和得分信息,并将结果保存到文件中。

导入需要的库和模块

在这里插入图片描述

import requests
from lxml import etree
  • 使用requests库发送HTTP请求。
  • 使用lxml库进行HTML解析。

设置请求头和请求地址

在这里插入图片描述

url = 'https://nba.hupu.com/stats/players'
headers ={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.70 Safari/537.36'
}
  • 设置请求头信息,包括用户代理(User-Agent)。
  • 设置请求的地址为’https://nba.hupu.com/stats/players’。

发送HTTP请求并获取响应

在这里插入图片描述

resp = requests.get(url, headers=headers)
  • 使用requests库发送HTTP GET请求,并传入请求地址和请求头信息。
  • 将返回的响应保存在变量resp中。

处理响应结果

在这里插入图片描述

e = etree.HTML(resp.text)
  • 使用etree.HTML函数将返回的响应文本解析为一个可操作的HTML元素树对象。
  • 将解析后的结果保存在变量e中。

解析数据

在这里插入图片描述

nos = e.xpath('//table[@class="players_table"]//tr/td[1]/text()')
names = e.xpath('//table[@class="players_table"]//tr/td[2]/a/text()')
teams = e.xpath('//table[@class="players_table"]//tr/td[3]/a/text()')
scores = e.xpath('//table[@class="players_table"]//tr/td[4]/text()')
  • 使用XPath表达式从HTML元素树中提取需要的数据。
  • 分别将排名(nos)、姓名(names)、球队(teams)和得分(scores)保存在对应的变量中。

将结果保存到文件

with open('nba.txt', 'w', encoding='utf-8') as f:for no, name, team, score in zip(nos, names, teams, scores):f.write(f'排名:{no} 姓名:{name}  球队:{team} 得分:{score}\n')
  • 打开一个文件nba.txt,以写入模式(‘w’)进行操作,编码方式为UTF-8。
  • 使用zip函数同时遍历排名、姓名、球队和得分,将它们合并成一个元组。
  • 将每一行的数据按照指定格式写入文件中。

完整代码

# 引入 requests 库,用于发送 HTTP 请求
import requests
# 引入 lxml 库,用于解析 HTML
from lxml import etree# 设置请求的地址
url = 'https://nba.hupu.com/stats/players'
# 设置请求头信息,包括用户代理(User-Agent)
headers ={ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.70 Safari/537.36'
}# 发送HTTP GET请求,并传入请求地址和请求头信息,将返回的响应保存在变量resp中
resp = requests.get(url, headers=headers)# 使用etree.HTML函数将返回的响应文本解析为一个可操作的HTML元素树对象
e = etree.HTML(resp.text)# 使用XPath表达式从HTML元素树中提取需要的数据
nos = e.xpath('//table[@class="players_table"]//tr/td[1]/text()')
names = e.xpath('//table[@class="players_table"]//tr/td[2]/a/text()')
teams = e.xpath('//table[@class="players_table"]//tr/td[3]/a/text()')
scores = e.xpath('//table[@class="players_table"]//tr/td[4]/text()')# 打开一个文件`nba.txt`,以写入模式('w')进行操作,编码方式为UTF-8
with open('nba.txt', 'w', encoding='utf-8') as f:# 使用zip函数同时遍历排名、姓名、球队和得分,将它们合并成一个元组for no, name, team, score in zip(nos, names, teams, scores):# 将每一行的数据按照指定格式写入文件中f.write(f'排名:{no} 姓名:{name}  球队:{team} 得分:{score}\n')

详细解析

# pip install requests
import requests

导入 requests 库,该库用于发送 HTTP 请求。

# pip install lxml
from lxml import etree

导入 lxml 库,该库用于解析 HTML。

# 发送的地址
url = 'https://nba.hupu.com/stats/players'

设置需要发送请求的地址。

headers ={ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.70 Safari/537.36'}

设置请求头信息,包括用户代理(User-Agent)。这个信息告诉服务器我们的请求是从一个浏览器发出的,而不是爬虫,这样可以避免被反爬虫机制阻止。

# 发送请求
resp = requests.get(url,headers = headers)

使用 requests.get 方法发送 HTTP GET 请求,并传入请求地址和请求头信息。将返回的响应保存在变量 resp 中。

e = etree.HTML(resp.text)

使用 etree.HTML 函数将返回的响应文本解析为一个可操作的 HTML 元素树对象。etree.HTML 接受一个字符串类型的参数,这里使用 resp.text 来获取响应的文本内容。

nos = e.xpath('//table[@class="players_table"]//tr/td[1]/text()')
names = e.xpath('//table[@class="players_table"]//tr/td[2]/a/text()')
teams = e.xpath('//table[@class="players_table"]//tr/td[3]/a/text()')
scores = e.xpath('//table[@class="players_table"]//tr/td[4]/text()')

使用 XPath 表达式从 HTML 元素树中提取需要的数据。这里分别使用了四个 XPath 表达式来提取排名、姓名、球队和得分的数据,并将它们分别保存在 nosnamesteamsscores 变量中。

with open('nba.txt','w',encoding='utf-8') as f:for no,name,team,score in zip(nos,names,teams,scores):f.write(f'排名:{no} 姓名:{name}  球队:{team} 得分:{score}\n')

以写入模式(‘w’)打开一个名为 nba.txt 的文件,并使用 UTF-8 编码。然后,使用 zip 函数同时遍历排名、姓名、球队和得分,将它们合并成一个元组。通过循环遍历每个元组,将每行的数据按照指定格式写入文件中。

这样,代码就实现了对 NBA 球员数据进行爬取,并将结果保存到 nba.txt 文件中。

运行效果

在这里插入图片描述

结束语

通过本文的示例代码,你可以学习使用Python爬取NBA球员数据的方法。我们使用了requests库发送HTTP请求,lxml库进行HTML解析,以及XPath表达式提取需要的数据。最后将结果保存到文件中。这个示例可以帮助你了解爬虫的基本原理和操作步骤,同时也能够获取到有关NBA球员的数据。希望本文对你理解和掌握Python爬虫技术有所帮助。

这篇关于【小白必看】Python爬取NBA球员数据示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322860

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下