scrapy 教程 MySQL_详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

本文主要是介绍scrapy 教程 MySQL_详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

获取要爬取的URL

773cecffaacae937b98c20e2c693ce8e.png

149ead1e9d9c6e6e99f45bfac9f5056d.png

432af78e253e3ca6efc9dd6c36391062.png

819a159bedcaf0a8f3303ecce2fd64e7.png

799afe868bc134b9840af2a081b7c019.png

d0f3bbb92a5996947732ff095ed4de8d.png

爬虫前期工作

c0906de3d638a492c6889a783383adbd.png

用Pycharm打开项目开始写爬虫文件

字段文件items

# Define here the models for your scraped items

#

# See documentation in:

# https://docs.scrapy.org/en/latest/topics/items.html

import scrapy

class NbaprojectItem(scrapy.Item):

# define the fields for your item here like:

# name = scrapy.Field()

# pass

# 创建字段的固定格式-->scrapy.Field()

# 英文名

engName = scrapy.Field()

# 中文名

chName = scrapy.Field()

# 身高

height = scrapy.Field()

# 体重

weight = scrapy.Field()

# 国家英文名

contryEn = scrapy.Field()

# 国家中文名

contryCh = scrapy.Field()

# NBA球龄

experience = scrapy.Field()

# 球衣号码

jerseyNo = scrapy.Field()

# 入选年

draftYear = scrapy.Field()

# 队伍英文名

engTeam = scrapy.Field()

# 队伍中文名

chTeam = scrapy.Field()

# 位置

position = scrapy.Field()

# 东南部

displayConference = scrapy.Field()

# 分区

division = scrapy.Field()

爬虫文件

import scrapy

import json

from nbaProject.items import NbaprojectItem

class NbaspiderSpider(scrapy.Spider):

name = 'nbaSpider'

allowed_domains = ['nba.com']

# 第一次爬取的网址,可以写多个网址

# start_urls = ['http://nba.com/']

start_urls = ['https://china.nba.com/static/data/league/playerlist.json']

# 处理网址的response

def parse(self, response):

# 因为访问的网站返回的是json格式,首先用第三方包处理json数据

data = json.loads(response.text)['payload']['players']

# 以下列表用来存放不同的字段

# 英文名

engName = []

# 中文名

chName = []

# 身高

height = []

# 体重

weight = []

# 国家英文名

contryEn = []

# 国家中文名

contryCh = []

# NBA球龄

experience = []

# 球衣号码

jerseyNo = []

# 入选年

draftYear = []

# 队伍英文名

engTeam = []

# 队伍中文名

chTeam = []

# 位置

position = []

# 东南部

displayConference = []

# 分区

division = []

# 计数

count = 1

for i in data:

# 英文名

engName.append(str(i['playerProfile']['firstNameEn'] + i['playerProfile']['lastNameEn']))

# 中文名

chName.append(str(i['playerProfile']['firstName'] + i['playerProfile']['lastName']))

# 国家英文名

contryEn.append(str(i['playerProfile']['countryEn']))

# 国家中文

contryCh.append(str(i['playerProfile']['country']))

# 身高

height.append(str(i['playerProfile']['height']))

# 体重

weight.append(str(i['playerProfile']['weight']))

# NBA球龄

experience.append(str(i['playerProfile']['experience']))

# 球衣号码

jerseyNo.append(str(i['playerProfile']['jerseyNo']))

# 入选年

draftYear.append(str(i['playerProfile']['draftYear']))

# 队伍英文名

engTeam.append(str(i['teamProfile']['code']))

# 队伍中文名

chTeam.append(str(i['teamProfile']['displayAbbr']))

# 位置

position.append(str(i['playerProfile']['position']))

# 东南部

displayConference.append(str(i['teamProfile']['displayConference']))

# 分区

division.append(str(i['teamProfile']['division']))

# 创建item字段对象,用来存储信息 这里的item就是对应上面导的NbaprojectItem

item = NbaprojectItem()

item['engName'] = str(i['playerProfile']['firstNameEn'] + i['playerProfile']['lastNameEn'])

item['chName'] = str(i['playerProfile']['firstName'] + i['playerProfile']['lastName'])

item['contryEn'] = str(i['playerProfile']['countryEn'])

item['contryCh'] = str(i['playerProfile']['country'])

item['height'] = str(i['playerProfile']['height'])

item['weight'] = str(i['playerProfile']['weight'])

item['experience'] = str(i['playerProfile']['experience'])

item['jerseyNo'] = str(i['playerProfile']['jerseyNo'])

item['draftYear'] = str(i['playerProfile']['draftYear'])

item['engTeam'] = str(i['teamProfile']['code'])

item['chTeam'] = str(i['teamProfile']['displayAbbr'])

item['position'] = str(i['playerProfile']['position'])

item['displayConference'] = str(i['teamProfile']['displayConference'])

item['division'] = str(i['teamProfile']['division'])

# 打印爬取信息

print("传输了",count,"条字段")

count += 1

# 将字段交回给引擎 -> 管道文件

yield item

配置文件->开启管道文件

387a6b273abefb6342894be859cbf2b7.png

e8df7bdab48b4365a00c7213f92166cc.png

# Scrapy settings for nbaProject project

#

# For simplicity, this file contains only settings considered important or

# commonly used. You can find more settings consulting the documentation:

#

# https://docs.scrapy.org/en/latest/topics/settings.html

# https://docs.scrapy.org/en/latest/topics/downloader-middleware.html

# https://docs.scrapy.org/en/latest/topics/spider-middleware.html

# ----------不做修改部分---------

BOT_NAME = 'nbaProject'

SPIDER_MODULES = ['nbaProject.spiders']

NEWSPIDER_MODULE = 'nbaProject.spiders'

# ----------不做修改部分---------

# Crawl responsibly by identifying yourself (and your website) on the user-agent

#USER_AGENT = 'nbaProject (+http://www.yourdomain.com)'

# Obey robots.txt rules

# ----------修改部分(可以自行查这是啥东西)---------

# ROBOTSTXT_OBEY = True

# ----------修改部分---------

# Configure maximum concurrent requests performed by Scrapy (default: 16)

#CONCURRENT_REQUESTS = 32

# Configure a delay for requests for the same website (default: 0)

# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay

# See also autothrottle settings and docs

#DOWNLOAD_DELAY = 3

# The download delay setting will honor only one of:

#CONCURRENT_REQUESTS_PER_DOMAIN = 16

#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)

#COOKIES_ENABLED = False

# Disable Telnet Console (enabled by default)

#TELNETCONSOLE_ENABLED = False

# Override the default request headers:

#DEFAULT_REQUEST_HEADERS = {

# 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',

# 'Accept-Language': 'en',

#}

# Enable or disable spider middlewares

# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html

#SPIDER_MIDDLEWARES = {

# 'nbaProject.middlewares.NbaprojectSpiderMiddleware': 543,

#}

# Enable or disable downloader middlewares

# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html

#DOWNLOADER_MIDDLEWARES = {

# 'nbaProject.middlewares.NbaprojectDownloaderMiddleware': 543,

#}

# Enable or disable extensions

# See https://docs.scrapy.org/en/latest/topics/extensions.html

#EXTENSIONS = {

# 'scrapy.extensions.telnet.TelnetConsole': None,

#}

# Configure item pipelines

# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html

# 开启管道文件

# ----------修改部分---------

ITEM_PIPELINES = {

'nbaProject.pipelines.NbaprojectPipeline': 300,

}

# ----------修改部分---------

# Enable and configure the AutoThrottle extension (disabled by default)

# See https://docs.scrapy.org/en/latest/topics/autothrottle.html

#AUTOTHROTTLE_ENABLED = True

# The initial download delay

#AUTOTHROTTLE_START_DELAY = 5

# The maximum download delay to be set in case of high latencies

#AUTOTHROTTLE_MAX_DELAY = 60

# The average number of requests Scrapy should be sending in parallel to

# each remote server

#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0

# Enable showing throttling stats for every response received:

#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)

# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings

#HTTPCACHE_ENABLED = True

#HTTPCACHE_EXPIRATION_SECS = 0

#HTTPCACHE_DIR = 'httpcache'

#HTTPCACHE_IGNORE_HTTP_CODES = []

#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

管道文件 -> 将字段写进mysql

# Define your item pipelines here

#

# Don't forget to add your pipeline to the ITEM_PIPELINES setting

# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html

# useful for handling different item types with a single interface

from itemadapter import ItemAdapter

import pymysql

class NbaprojectPipeline:

# 初始化函数

def __init__(self):

# 连接数据库 注意修改数据库信息

self.connect = pymysql.connect(host='域名', user='用户名', passwd='密码',

db='数据库', port=端口号)

# 获取游标

self.cursor = self.connect.cursor()

# 创建一个表用于存放item字段的数据

createTableSql = """

create table if not exists `nbaPlayer`(

playerId INT UNSIGNED AUTO_INCREMENT,

engName varchar(80),

chName varchar(20),

height varchar(20),

weight varchar(20),

contryEn varchar(50),

contryCh varchar(20),

experience int,

jerseyNo int,

draftYear int,

engTeam varchar(50),

chTeam varchar(50),

position varchar(50),

displayConference varchar(50),

division varchar(50),

primary key(playerId)

)charset=utf8;

"""

# 执行sql语句

self.cursor.execute(createTableSql)

self.connect.commit()

print("完成了创建表的工作")

#每次yield回来的字段会在这里做处理

def process_item(self, item, spider):

# 打印item增加观赏性

print(item)

# sql语句

insert_sql = """

insert into nbaPlayer(

playerId, engName,

chName,height,

weight,contryEn,

contryCh,experience,

jerseyNo,draftYear

,engTeam,chTeam,

position,displayConference,

division

) VALUES (null,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)

"""

# 执行插入数据到数据库操作

# 参数(sql语句,用item字段里的内容替换sql语句的占位符)

self.cursor.execute(insert_sql, (item['engName'], item['chName'], item['height'], item['weight']

, item['contryEn'], item['contryCh'], item['experience'], item['jerseyNo'],

item['draftYear'], item['engTeam'], item['chTeam'], item['position'],

item['displayConference'], item['division']))

# 提交,不进行提交无法保存到数据库

self.connect.commit()

print("数据提交成功!")

启动爬虫

87a84a0fb807dcf15ee87f453442fbab.png

屏幕上滚动的数据

9bb7b28c47e3e39fc891ceb046d71f1a.png

去数据库查看数据

7ef2cfb1fd6a41983bd7947c4f9ce3c1.png

简简单单就把球员数据爬回来啦~

到此这篇关于详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库的文章就介绍到这了,更多相关Scrapy爬虫员数据存放到Mysql内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

本文标题: 详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

本文地址: http://www.cppcns.com/shujuku/mysql/374912.html

这篇关于scrapy 教程 MySQL_详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322859

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo