损失函数总结(十一):Huber Loss、SmoothL1Loss

2023-11-01 11:20

本文主要是介绍损失函数总结(十一):Huber Loss、SmoothL1Loss,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

损失函数总结(十一):Huber Loss、SmoothL1Loss

  • 1 引言
  • 2 损失函数
    • 2.1 Huber Loss
    • 2.2 SmoothL1Loss
  • 3 总结

1 引言

在前面的文章中已经介绍了介绍了一系列损失函数 (L1LossMSELossBCELossCrossEntropyLossNLLLossCTCLossPoissonNLLLossGaussianNLLLossKLDivLossBCEWithLogitsLossMarginRankingLossHingeEmbeddingLossMultiMarginLossMultiLabelMarginLossSoftMarginLossMultiLabelSoftMarginLossTripletMarginLossTripletMarginWithDistanceLoss)。在这篇文章中,会接着上文提到的众多损失函数继续进行介绍,给大家带来更多不常见的损失函数的介绍。这里放一张损失函数的机理图:
在这里插入图片描述

2 损失函数

2.1 Huber Loss

MSE 损失收敛快但容易受 outlier 影响,MAE 对 outlier 更加健壮但是收敛慢Huber Loss 则是一种将 MSE 与 MAE 结合起来,取两者优点的损失函数,也被称作 Smooth Mean Absolute Error Loss 。其原理很简单,就是在误差接近 0 时使用 MSE,误差较大时使用 MAE。Huber Loss的数学表达式如下:
l ( x , y ) = L = { l 1 , . . . , l N } T l(x, y) = L = \{l_1, ..., l_N\}^T l(x,y)=L={l1,...,lN}T

其中,
l n = { 0.5 ( x n − y n ) 2 , i f ∣ x n − y n ∣ < d e l t a d e l t a ∗ ( ∣ x n − y n ∣ − 0.5 ∗ d e l t a ) , o t h e r w i s e l_n = \left\{\begin{matrix} 0.5(x_n-y_n)^2, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if \ |x_n-y_n|<delta \\ delta*(|x_n-y_n| - 0.5*delta), \ \ \ \ \ \ \ \ \ \ \ otherwise \end{matrix}\right. ln={0.5(xnyn)2,                         if xnyn<deltadelta(xnyn0.5delta),           otherwise

注意:当 d e l t a = 1 delta=1 delta=1 时,该损失函数等价于SmoothL1Loss。

代码实现(Pytorch):

import numpy as np
# 观测值
y = np.array([2.5, 3.7, 5.1, 4.2, 6.8])
# 模型预测值
f_x = np.array([2.2, 3.8, 4.9, 4.5, 7.2])
# 设置Huber损失的超参数
delta = 1.0
# 计算Huber损失
def huber_loss(y, f_x, delta):loss = np.where(np.abs(y - f_x) <= delta, 0.5 * (y - f_x) ** 2, delta * np.abs(y - f_x) - 0.5 * delta ** 2)
return loss
loss = huber_loss(y, f_x, delta)
print("Huber Loss for each data point:", loss)
print("Mean Huber Loss:", np.mean(loss))

由于存在一个需要迭代的超参数 d e l t a delta delta, 因此在深度学习领域还是MSE等简单损失函数占据独特优势。

2.2 SmoothL1Loss

论文链接:Fast R-CNN

SmoothL1Loss 是一种常用于回归任务的损失函数,是 L1Loss 的平滑版本。相比于L1Loss(MAELoss),SmoothL1Loss 可以收敛得更快;相比于L2Loss(MSELoss),SmoothL1Loss 对离群点、异常值不敏感,梯度变化相对更小,训练时不容易跑飞。SmoothL1Loss 的数学表达式如下:
l n = { 0.5 ( x n − y n ) 2 / b e t a , i f ∣ x n − y n ∣ < b e t a ∣ x n − y n ∣ − 0.5 ∗ b e t a , o t h e r w i s e l_n = \left\{\begin{matrix} 0.5(x_n-y_n)^2/beta, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if \ |x_n-y_n|<beta\\ |x_n-y_n| - 0.5*beta, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ otherwise \end{matrix}\right. ln={0.5(xnyn)2/beta,                         if xnyn<betaxnyn0.5beta,                                    otherwise

  • beta:指定该损失在 L 1 ∼ L 2之间变化的阈值,默认为1.0。

代码实现(Pytorch):

import torch.nn as nn
import torchloss1 = nn.SmoothL1Loss(reduction='none')
loss2 = nn.SmoothL1Loss(reduction='mean')y = torch.randn(3)
y_pred = torch.randn(3)
loss_value1 = loss1(y, y_pred)
loss_value2 = loss2(y, y_pred)print(y)   # tensor([ 1.6938, -0.3617, -1.2738])
print(y_pred)   # tensor([ 0.3932,  0.8715, -0.2410])
print(loss_value1)   # tensor([0.8007, 0.7332, 0.5328])
print(loss_value2)   # tensor(0.6889)

超参数会限制损失函数的训练速度,整体而言可能还是 MSELoss 更好用。。。。

3 总结

到此,使用 损失函数总结(十一) 已经介绍完毕了!!! 如果有什么疑问欢迎在评论区提出,对于共性问题可能会后续添加到文章介绍中。如果存在没有提及的损失函数也可以在评论区提出,后续会对其进行添加!!!!

如果觉得这篇文章对你有用,记得点赞、收藏并分享给你的小伙伴们哦😄。

这篇关于损失函数总结(十一):Huber Loss、SmoothL1Loss的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322589

相关文章

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

kotlin的函数forEach示例详解

《kotlin的函数forEach示例详解》在Kotlin中,forEach是一个高阶函数,用于遍历集合中的每个元素并对其执行指定的操作,它的核心特点是简洁、函数式,适用于需要遍历集合且无需返回值的场... 目录一、基本用法1️⃣ 遍历集合2️⃣ 遍历数组3️⃣ 遍历 Map二、与 for 循环的区别三、高

C语言字符函数和字符串函数示例详解

《C语言字符函数和字符串函数示例详解》本文详细介绍了C语言中字符分类函数、字符转换函数及字符串操作函数的使用方法,并通过示例代码展示了如何实现这些功能,通过这些内容,读者可以深入理解并掌握C语言中的字... 目录一、字符分类函数二、字符转换函数三、strlen的使用和模拟实现3.1strlen函数3.2st

Java反转字符串的五种方法总结

《Java反转字符串的五种方法总结》:本文主要介绍五种在Java中反转字符串的方法,包括使用StringBuilder的reverse()方法、字符数组、自定义StringBuilder方法、直接... 目录前言方法一:使用StringBuilder的reverse()方法方法二:使用字符数组方法三:使用自

MySQL中COALESCE函数示例详解

《MySQL中COALESCE函数示例详解》COALESCE是一个功能强大且常用的SQL函数,主要用来处理NULL值和实现灵活的值选择策略,能够使查询逻辑更清晰、简洁,:本文主要介绍MySQL中C... 目录语法示例1. 替换 NULL 值2. 用于字段默认值3. 多列优先级4. 结合聚合函数注意事项总结C

Python依赖库的几种离线安装方法总结

《Python依赖库的几种离线安装方法总结》:本文主要介绍如何在Python中使用pip工具进行依赖库的安装和管理,包括如何导出和导入依赖包列表、如何下载和安装单个或多个库包及其依赖,以及如何指定... 目录前言一、如何copy一个python环境二、如何下载一个包及其依赖并安装三、如何导出requirem