本文主要是介绍【强化学习】13 —— Actor-Critic 算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- REINFORCE 存在的问题
- Actor-Critic
- A2C: Advantageous Actor-Critic
- 代码实践
- 结果
- 参考
REINFORCE 存在的问题
- 基于片段式数据的任务
- 通常情况下,任务需要有终止状态,REINFORCE才能直接计算累计折扣奖励
- 低数据利用效率
- 实际中,REINFORCE需要大量的训练数据
- 高训练方差(最重要的缺陷)
- 从单个或多个片段中采样到的值函数具有很高的方差
Actor-Critic
在 REINFORCE 算法中,目标函数的梯度中有一项轨迹回报,用于指导策略的更新。REINFOCE 算法用蒙特卡洛方法来估计 Q ( s , a ) Q(s,a) Q(s,a),能不能考虑拟合一个值函数来指导策略进行学习呢?这正是 Actor-Critic 算法所做的。
评论家Critic Q Φ ( s , a ) Q_\Phi (s,a) QΦ(s,a):
- 学会准确估计当前演员策略(actor policy)的动作价值。通过 Actor 与环境交互收集的数据学习一个价值函数,这个价值函数会用于判断在当前状态什么动作是好的,什么动作不是好的,进而帮助 Actor 进行策略更新。 Q Φ ( s , a ) ≃ r ( s , a ) + γ E s ′ ∼ p ( s ′ ∣ s , a ) , a ′ ∼ π θ ( a ′ ∣ s ′ ) [ Q Φ ( s ′ , a ′ ) ] Q_\Phi(s,a)\simeq r(s,a)+\gamma\mathbb{E}_{s^{\prime}\thicksim p(s^{\prime}|s,a),a^{\prime}\thicksim\pi_\theta(a^{\prime}|s^{\prime})}[Q_\Phi(s^{\prime},a^{\prime})] QΦ(s,a)≃r(s,a)+γEs′∼p(s′∣s,a),a′∼πθ(a′∣s′)[QΦ(s′,a′)]
演员Actor π θ ( s , a ) \pi_\theta(s,a) πθ(s,a):
- 要做的是与环境交互,并在 Critic 价值函数的指导下用策略梯度学习一个更好的策略。 J ( θ ) = E s ∼ p , π θ [ π θ ( a ∣ s ) Q Φ ( s , a ) ] ∂ f ( θ ) ∂ θ = E π θ [ ∂ log π θ ( a ∣ s ) ∂ θ Q Φ ( s , a ) ] \begin{aligned}J(\theta)&=\mathbb{E}_{s\sim p,\pi_\theta}[\pi_\theta(a|s)Q_\Phi(s,a)]\\\\\frac{\partial f(\theta)}{\partial\theta}&=\mathbb{E}_{\pi_\theta}\left[\frac{\partial\log\pi_\theta(a|s)}{\partial\theta}Q_\Phi(s,a)\right]\end{aligned} J(θ)∂θ∂f(θ)=Es∼p,πθ[πθ(a∣s)QΦ(s,a)]=Eπθ[∂θ∂logπθ(a∣s)QΦ(s,a)]
A2C: Advantageous Actor-Critic
思想:通过减去一个基线函数来标准化评论家的打分
- 更多信息指导:降低较差动作概率,提高较优动作概率
- 进一步降低方差
优势函数(Advantage Function) A π ( s , a ) = Q π ( s , a ) − V π ( s ) A^\pi(s,a)=Q^\pi(s,a)-V^\pi(s) Aπ(s,a)=Qπ(s,a)−Vπ(s)
若只采用动作值的方式,虽然也会选择A2,但是方差相对会更大,同时所有的动作都是出于上升的状态,只是上升程度的问题。而采用优势函数的方式,部分动作的优势函数值是负的,可以直接降低相应动作的概率,同时方差更小。
状态-动作值和状态值函数 Q π ( s , a ) = r ( s , a ) + γ E s ′ ∼ p ( s ′ ∣ s , a ) , a ′ ∼ π θ ( a ′ ∣ s ′ ) [ Q Φ ( s ′ , a ′ ) ] = r ( s , a ) + γ E s ′ ∼ p ( s ′ ∣ s , a ) [ V π ( s ′ ) ] \begin{aligned} Q^{\pi}(s,a)& =r(s,a)+\gamma\mathbb{E}_{s^{\prime}\sim p(s^{\prime}|s,a),a^{\prime}\sim\pi_\theta(a^{\prime}|s^{\prime})}\left[Q_\Phi(s^{\prime},a^{\prime})\right] \\ &=r(s,a)+\gamma\mathbb{E}_{s^{\prime}\sim p(s^{\prime}|s,a)}[V^{\pi}(s^{\prime})] \end{aligned} Qπ(s,a)=r(s,a)+γEs′∼p(s′∣s,a),a′∼πθ(a′∣s′)[QΦ(s′,a′)]=r(s,a)+γEs′∼p(s′∣s,a)[Vπ(s′)]
因此我们只需要拟合状态值函数来拟合优势函数 A π ( s , a ) = Q π ( s , a ) − V π ( s ) = r ( s , a ) + γ E s ′ ∼ p ( s ′ ∣ s , a ) [ V π ( s ′ ) − V π ( s ) ] ≃ r ( s , a ) + γ ( V π ( s ′ ) − V π ( s ) ) \begin{aligned} A^{\pi}(s,a)& =Q^\pi(s,a)-V^\pi(s) \\ &=r(s,a)+\gamma\mathbb{E}_{s^{\prime}\sim p(s^{\prime}|s,a)}[V^{\pi}(s^{\prime})-V^{\pi}(s)] \\ &\simeq r(s,a)+\gamma(V^{\pi}(s^{\prime})-V^{\pi}(s)) \end{aligned} Aπ(s,a)=Qπ(s,a)−Vπ(s)=r(s,a)+γEs′∼p(s′∣s,a)[Vπ(s′)−Vπ(s)]≃r(s,a)+γ(Vπ(s′)−Vπ(s))
在策略梯度中,可以把梯度写成下面这个更加一般的形式: g = E [ ∑ t = 0 T ψ t ∇ θ log π θ ( a t ∣ s t ) ] g=\mathbb{E}\left[\sum_{t=0}^T\psi_t\nabla_\theta\log\pi_\theta(a_t|s_t)\right] g=E[t=0∑Tψt∇θlogπθ(at∣st)]其中, ψ t \psi_t ψt可以有很多种形式: 1. ∑ t ′ = 0 T γ t ′ r t ′ : 轨迹的总回报; 2. ∑ t ′ = t T γ t ′ − t r t ′ : 动作 a t 之后的回报; 3. ∑ t ′ = t T γ t ′ − t r t ′ − b ( s t ) : 基准线版本的改进 ; 4. Q π θ ( s t , a t ) : 动作价值函数; 5. A π θ ( s t , a t ) : 优势函数; 6. r t + γ V π θ ( s t + 1 ) − V π θ ( s t ) : 时序差分残差。 \begin{aligned} &1.\sum_{t^{\prime}=0}^T\gamma^{t^{\prime}}r_{t^{\prime}}:\textit{轨迹的总回报;} \\ &2.\sum_{t^{\prime}=t}^T\gamma^{t^{\prime}-t}r_{t^{\prime}}:\textit{动作}a_t\textit{之后的回报;} \\ &\begin{aligned}3.\sum_{t^{\prime}=t}^T\gamma^{t^{\prime}-t}r_{t^{\prime}}-b(s_t):\textit{基准线版本的改进};\end{aligned} \\ &4.Q^{\pi_\theta}(s_t,a_t):\textit{动作价值函数;} \\ &5.A^{\pi_\theta}(s_t,a_t):\textit{优势函数;} \\ &6.r_t+\gamma V^{\pi_\theta}(s_{t+1})-V^{\pi_\theta}(s_t):\textit{时序差分残差。} \end{aligned} 1.t′=0∑Tγt′rt′:轨迹的总回报;2.t′=t∑Tγt′−trt′:动作at之后的回报;3.t′=t∑Tγt′−trt′−b(st):基准线版本的改进;4.Qπθ(st,at):动作价值函数;5.Aπθ(st,at):优势函数;6.rt+γVπθ(st+1)−Vπθ(st):时序差分残差。
REINFORCE 通过蒙特卡洛采样的方法对策略梯度的估计是无偏的,但是方差非常大。我们可以用形式(3)引入基线函数 b ( s t ) b(s_t) b(st)(baseline function)来减小方差。此外,我们也可以采用 Actor-Critic 算法估计一个动作价值函数 Q Q Q,代替蒙特卡洛采样得到的回报,这便是形式(4)。这个时候,我们可以把状态价值函数 V V V作为基线,从 Q Q Q函数减去这个 V V V函数则得到了 A A A函数,我们称之为优势函数(advantage function),这便是形式(5)。更进一步,我们可以利用等式 Q = r + γ V Q=r+\gamma V Q=r+γV得到形式(6)。
Actor 的更新采用策略梯度的原则,那 Critic 如何更新呢?我们将 Critic 价值网络表示为 V ω V_\omega Vω,参数为 ω \omega ω。于是,我们可以采取时序差分残差的学习方式,对于单个数据定义如下价值函数的损失函数: L ( ω ) = 1 2 ( r + γ V ω ( s t + 1 ) − V ω ( s t ) ) 2 \mathcal{L}(\omega)=\frac12(r+\gamma V_\omega(s_{t+1})-V_\omega(s_t))^2 L(ω)=21(r+γVω(st+1)−Vω(st))2
与 DQN 中一样,我们采取类似于目标网络的方法,将上式中 r + γ V ω ( s t + 1 ) r+\gamma V_\omega(s_{t+1}) r+γVω(st+1)作为时序差分目标,不会产生梯度来更新价值函数。因此,价值函数的梯度为:
∇ ω L ( ω ) = − ( r + γ V ω ( s t + 1 ) − V ω ( s t ) ) ∇ ω V ω ( s t ) \nabla_{\omega}\mathcal{L}(\omega)=-(r+\gamma V_{\omega}(s_{t+1})-V_{\omega}(s_{t}))\nabla_{\omega}V_{\omega}(s_{t}) ∇ωL(ω)=−(r+γVω(st+1)−Vω(st))∇ωVω(st)
然后使用梯度下降方法来更新 Critic 价值网络参数即可。
算法伪代码:
代码实践
import gymnasium as gym
import numpy as np
from tqdm import tqdm
import torch
import torch.nn.functional as F
import utilclass PolicyNet(torch.nn.Module):def __init__(self, state_dim, hidden_dim, action_dim):super(PolicyNet, self).__init__()self.fc1 = torch.nn.Linear(state_dim, hidden_dim)self.fc2 = torch.nn.Linear(hidden_dim, action_dim)def forward(self, x):x = F.relu(self.fc1(x))return F.softmax(self.fc2(x), dim=1)# 输入是某个状态,输出则是状态的价值。
class ValueNet(torch.nn.Module):def __init__(self, state_dim, hidden_dim):super(ValueNet, self).__init__()self.fc1 = torch.nn.Linear(state_dim, hidden_dim)self.fc2 = torch.nn.Linear(hidden_dim, 1)def forward(self, x):x = F.relu(self.fc1(x))return self.fc2(x)class ActorCritic:def __init__(self, state_dim, hidden_dim, action_dim, actor_lr, critic_lr, gamma,device, numOfEpisodes, env):self.actor = PolicyNet(state_dim, hidden_dim, action_dim).to(device)self.critic = ValueNet(state_dim, hidden_dim).to(device)self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)self.gamma = gammaself.device = deviceself.env = envself.numOfEpisodes = numOfEpisodes# 根据动作概率分布随机采样def takeAction(self, state):state = torch.tensor(np.array([state]), dtype=torch.float).to(self.device)action_probs = self.actor(state)action_dist = torch.distributions.Categorical(action_probs)action = action_dist.sample()return action.item()def update(self, transition_dict):states = torch.tensor(np.array(transition_dict['states']), dtype=torch.float).to(self.device)actions = torch.tensor(transition_dict['actions']).view(-1, 1).to(self.device)rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1, 1).to(self.device)next_states = torch.tensor(np.array(transition_dict['next_states']), dtype=torch.float).to(self.device)terminateds = torch.tensor(transition_dict['terminateds'], dtype=torch.float).view(-1, 1).to(self.device)truncateds = torch.tensor(transition_dict['truncateds'], dtype=torch.float).view(-1, 1).to(self.device)# 时序差分目标td_target = rewards + self.gamma * self.critic(next_states) * (1 - terminateds + truncateds)# 时序差分误差td_delta = td_target - self.critic(states)log_probs = torch.log(self.actor(states).gather(1, actions))# 均方误差损失函数actor_loss = torch.mean(-log_probs * td_delta.detach())critic_loss = torch.mean(F.mse_loss(self.critic(states), td_target.detach()))self.actor_optimizer.zero_grad()self.critic_optimizer.zero_grad()actor_loss.backward()critic_loss.backward()self.actor_optimizer.step()self.critic_optimizer.step()def ACTrain(self):returnList = []for i in range(10):with tqdm(total=int(self.numOfEpisodes / 10), desc='Iteration %d' % i) as pbar:for episode in range(int(self.numOfEpisodes / 10)):# initialize statestate, info = self.env.reset()terminated = Falsetruncated = FalseepisodeReward = 0transition_dict = {'states': [],'actions': [],'next_states': [],'rewards': [],'terminateds': [],'truncateds': []}# Loop for each step of episode:while 1:action = self.takeAction(state)next_state, reward, terminated, truncated, info = self.env.step(action)transition_dict['states'].append(state)transition_dict['actions'].append(action)transition_dict['next_states'].append(next_state)transition_dict['rewards'].append(reward)transition_dict['terminateds'].append(terminated)transition_dict['truncateds'].append(truncated)state = next_stateepisodeReward += rewardif terminated or truncated:breakself.update(transition_dict)returnList.append(episodeReward)if (episode + 1) % 10 == 0: # 每10条序列打印一下这10条序列的平均回报pbar.set_postfix({'episode':'%d' % (self.numOfEpisodes / 10 * i + episode + 1),'return':'%.3f' % np.mean(returnList[-10:])})pbar.update(1)return returnList
结果
可以发现,Actor-Critic 算法很快便能收敛到最优策略,并且训练过程非常稳定,抖动情况相比 REINFORCE 算法有了明显的改进,这说明价值函数的引入减小了方差。
参考
[1] 伯禹AI
[2] https://www.davidsilver.uk/teaching/
[3] 动手学强化学习
[4] Reinforcement Learning
这篇关于【强化学习】13 —— Actor-Critic 算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!