TRS 2023 | Spurs in Millimeter-Wave FMCW Radar System-on-Chip

2023-11-01 06:04

本文主要是介绍TRS 2023 | Spurs in Millimeter-Wave FMCW Radar System-on-Chip,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原始笔记链接: https://mp.weixin.qq.com/s?__biz=Mzg4MjgxMjgyMg==&mid=2247486779&idx=1&sn=c75171844595150abc48d2dd59e7255f&chksm=cf51bfc2f82636d4e3f9c8526d0f25df1bea5496d9945d1e963961fea8c8fd630e7670b99afb#rd
↑ \uparrow 打开上述链接即可阅读全文

TRS 2023 | Spurs in Millimeter-Wave FMCW Radar System-on-Chip

毫米波雷达论文阅读: TRS 2023 | Spurs in Millimeter-Wave FMCW Radar System-on-Chip

图 0

论文链接:https://ieeexplore.ieee.org/document/10097751

0 Abstract

  • 研究内容

    • present a nonlinear system model to evaluate the impact of circuit nonlinearities on spurs in millimeter-wave FMCW radar system-on-chips

    • The developed model includes:

      ✅ Harmonics of the frequency multiplier (频率乘法器的谐波)

      ✅ Nonlinearity of the power amplifier (PA) and low-noise amplifier (LNA) (功率放大器和低噪声放大器的非线性度)

      ✅ Switching operation of the receiver (RX) mixer (接收机混频器的切换操作)

      ✅ Limited bandwidth of the PA, LNA, transmitter (TX) and RX antennas (PA, LNA, 发射接收天线的有效带宽)

      ✅ TX-to-RX leakage (发射接收泄漏)

  • 意义

    • The nonlinear model can be used to derive frequency and amplitude of spurs in the radar IF spectrum
    • without time-consuming simulations
  • Insights : The major insights about the impact of different nonlinearities and their interactions

    • Harmonics of the frequency multiplier appear as spurs in the IF spectrum
    • PA can be driven in its nonlinear region to mitigate the harmonics generated by the frequency multiplier
    • Bandwidth of the TX and RX systems should be limited to attenuate the undesired harmonics(衰减不希望出现的谐波)
    • Interaction between the TX-to-RX leakage signal and the LNA nonlinearity can lead to spurs close to the target echo in the IF spectrum

1 Introduction

  • 背景: Millimeter-wave high-resolution radars的重要性

    • Automotive sensors (ADAS, autonomous driving)
    • Medical imaging, vital signs monitoring, gesture recognition
    • IoT sensors, smart buildings, industrial transport, robotics
  • 背景: mm-wave radar SoC 的最新进展

    • Implemented in CMOS, SOI, SiGe processes
    • Operating at 60 GHz, 77 GHz, 76-81 GHz, 140 GHz, 200-300 GHz
    • Achieving high range resolution by using higher mm-wave bands and wide bandwidth
    • Achieving high angular resolution using MIMO architecture
  • 问题:广泛使用的FMCW雷达系统存在Spurs

    • Signal generation can be challenging due to requirements on:

      ✅ Bandwidth

      ✅ Phase noise

      ✅ Jitter

      ✅ Spurs

    • 前三种已经有解决方案:Nonlinear effects such as chirp nonlinearity can be mitigated using error correction or calibration techniques

    • Spurs: Spurs are undesired signals in the radar IF spectrum that can be generated by

      ❗ Harmonics of the frequency multiplier (因为low harmonic rejection ration(HRR) of the frequency multiplier)

      ❗ Nonlinearities of the power amplifier (PA) and low-noise amplifier (LNA) (通过 affect the harmonics level)

      ❗ TX-to-RX leakage (通过 affect the harmonics level)

    • 结论:一个全面的非线性模型对于推导 对 FMCW雷达电路组件的有效电路和系统设计 的要求 至关重要

  • This paper : presents a nonlinear system model for mm-wave FMCW radars

    • includes several important effects

      harmonics of the frequency multiplier

      nonlinearity of the PA, LNA

      the switching operation of the RX mixer

      the limited bandwidth of the TX and RX

      the stop-band rejections of the TX, RX, and IF filter

      the TX-to-RX leakage

    • To evaluate circuit nonlinearities and their interactions

    • 作用:

      ✅ The developed model can be used to estimate the frequency and amplitude of spurs in the radar IF spectrum

      without the need for time-consuming system and circuit simulations

2 Non-Linear System Model of FMCW Radar

2.1 Principles of FMCW Radar

图 1

  • Architecture of a mm-wave FMCW radar system:

    • Reference chirp signal is generated at lower frequency (e.g. 10 GHz)

    • Then Frequency multiplier transforms it to mm-wave band

      好处 :useful to achieve lower phase noise in the reference signal

    • Multiplier output signal is amplified by PA (功率放大器) and transmitted

    • Echo signal is received, amplified by LNA (低噪声放大器) and mixed with replica of multiplier output

    • Mixer output signal passes through IF bandpass filter (BPF)

  • Reference chirp signal

    • Linear time-dependent frequency:

      f r e f ( t ) = f 0 + S t 0 ≤ t ≤ T c f_{\mathrm{ref}}(t)=f_0+S t \quad 0 \leq t \leq T_c fref(t)=f0+St0tTc

      T c T_c Tc: chirp period

    • Instantaneous phase:

      Φ r e f ( t ) = 2 π ∫ f r e f ( t ) d t = Φ 0 + 2 π f 0 t + π S t 2 \Phi_{\mathrm{ref}}(t)=2 \pi \int f_{\mathrm{ref}}(t) d t=\Phi_0+2 \pi f_0 t+\pi S t^2 Φref(t)=2πfref(t)dt=Φ0+2πf0t+πSt2

  • Frequency multiplier ideally generates

    • Chirp signal with frequency N f r e f ( t ) Nf_{ref}(t) Nfref(t)
    • Bandwidth of N B NB NB
    • Slope of N S NS NS
    • Period of T c T_c Tc
  • Received signal related to transmitted signal

    • x R X ( t ) = G R x T X ( t − τ R ) x_{\mathrm{RX}}(t)=G_R x_{\mathrm{TX}}\left(t-\tau_R\right) xRX(t)=GRxTX(tτR),
    • GR: attenuation factor – G R = ( G A , T X G A , R X L s y s σ λ 2 ( 4 π ) 3 R 4 ) 1 2 G_R=\left(\frac{G_{\mathrm{A}, \mathrm{TX}} G_{\mathrm{A}, \mathrm{RX}} L_{\mathrm{sys}} \sigma \lambda^2}{(4 \pi)^3 R^4}\right)^{\frac{1}{2}} GR=((4π)3R4GA,TXGA,RXLsysσλ2)21
    • τ R \tau_R τR: time-of-flight – τ R 0 = 2 R 0 c \tau_{R_0}=\frac{2 R_0}{c} τR0=c2R0
  • Mixer + BPF output signal

    • instantaneous phase: Φ I F ( t ) = N Φ r e f ( t ) − N Φ r e f ( t − τ R ( t ) ) \Phi_{\mathrm{IF}}(t)=N \Phi_{\mathrm{ref}}(t)-N \Phi_{\mathrm{ref}}\left(t-\tau_R(t)\right) ΦIF(t)=NΦref(t)NΦref(tτR(t))

    • ⇒ \Rightarrow 大致表示一个正弦信号, frequency:

      f I F = ( N S ) τ R 0 + f D = ( 2 N S c ) R 0 + ( 2 N f 0 c ) v f_{\mathrm{IF}}=(N S) \tau_{R_0}+f_D=\left(\frac{2 N S}{c}\right) R_0+\left(\frac{2 N f_0}{c}\right) v fIF=(NS)τR0+fD=(c2NS)R0+(c2Nf0)v

    • 2D FFT to get Range and Velocity

2.2 FMCW Radar Nonlinear Model

A nonlinear system model which properly captures the circuit nonlinearities and interactions of different nonlinear effects with each other can be very valuable for efficient design of a mm-wave FMCW radar SoC.

在这里插入图片描述

2.2.1 Important nonlinear effects in FMCW radar system model:
  • Output harmonics of frequency multiplier

    • Neglect spurs from reference circuits like PLL or DDS

    • Harmonics level depends on:

      Multiplier circuit structure

      Frequency band

      Chirp bandwidth

      Quality factor of passive components

      IC process features

    • The output of the frequency multiplier

      x o u t , M U L ( t ) = ∑ k = 1 ∞ a k cos ⁡ [ k Φ r e f ( t ) ] x_{\mathrm{out}, \mathrm{MUL}}(t)=\sum_{k=1}^{\infty} a_k \cos \left[k \Phi_{\mathrm{ref}}(t)\right] xout,MUL(t)=k=1akcos[kΦref(t)]

  • Nonlinearity of PA

    • Can change harmonics’ relative amplitude
    • Especially at low supply voltages
  • Bandwidth of PA and TX

    • Bandwidth of PA: how output harmonics of the frequency multiplier reach to the TX antenna

      ✅ 受负载阻抗(用来最大化输出功率/efficiency)的限制

    • Bandwidth of Tx

      ✅ three possible scenarios: 在这里插入图片描述

      ✅ 本文:假设为情况(b)

    • 谐波 k k k的相对衰减系数

      A T X , k = ∣ H T X ( j k ω 0 ) ∣ ∣ H T X ( j N ω 0 ) ∣ A_{\mathrm{TX}, \mathrm{k}}=\frac{\left|H_{\mathrm{TX}}\left(j k \omega_0\right)\right|}{\left|H_{\mathrm{TX}}\left(j N \omega_0\right)\right|} ATX,k=HTX(jNω0)HTX(jkω0),

      ✅ 决定因素:信号分量之间的频率差、PA电路中使用的片上无源元件的质量因子,以及TX天线带宽。

  • TX-to-RX leakage signal

    • 产生原因 :天线之间的耦合 + 芯片基板的耦合

    • 后果 :desensitizes the RX circuits (特别是LNA) ⇒ \Rightarrow 掩盖目标

    • 解决 :目前的leakage cancellation已经可以做到 30~50dB

      ✅ still limits system performance

    • The received signal: x R X ( t ) = G R x T X ( t − τ R ) + G L x T X ( t − τ L ) x_{\mathrm{RX}}(t)=G_R x_{\mathrm{TX}}\left(t-\tau_R\right)+G_L x_{\mathrm{TX}}\left(t-\tau_L\right) xRX(t)=GRxTX(tτR)+GLxTX(tτL),

      ✅ leakage的后果can be different for short and long target ranges

  • Bandwidth of LNA and RX

    • 意义:决定了能够到达混频器的谐波信号

    • LNA bandwidth:

      ✅ modeld by two transfer functions – H in, LNA  ( j ω ) H_{\text {in, LNA }}(j \omega) Hin, LNA () and H out,LNA  ( j ω ) H_{\text {out,LNA }}(j \omega) Hout,LNA ()

      ✅ 分别对应 输入和输出匹配网络的 frequency responses

      ✅ 带宽限制因素: input matching network (负责提供optimum noise matching)

    • RX bandwidth:

      ✅ 仍使用上图(b) (the same as for the TX)

    • The relative attenuation of the harmonic k k k:

      A R X , k = ∣ H R X ( j k ω 0 ) ∣ ∣ H R X ( j N ω 0 ) ∣ A_{\mathrm{RX}, \mathrm{k}}=\frac{\left|H_{\mathrm{RX}}\left(j k \omega_0\right)\right|}{\left|H_{\mathrm{RX}}\left(j N \omega_0\right)\right|} ARX,k=HRX(jNω0)HRX(jkω0).

  • Switching operation of RX mixer

    • Generates intermodulation distortion (互调失真, IMD)
    • Mixes 参考信号和LNA输出中的不同谐波 ⇒ \Rightarrow 在IF上生成spurs
  • Bandwidth and attenuation of IF filter

    • 通带纹波 的影响
    • Fig. 3(a)的情况: distort the chirp signal ⇒ \Rightarrow undesired amplitude and phase modulations
2.2.2 Model Limitations

存在Limitations的原因

  • 模型考虑了 Most important effects for accurate radar performance evaluation
  • Higher order imperfections excluded for clarity
  • Apply approximations to keep model simple yet insightful

Limitations

  • Frequency multiplier

    • Can have large amplitude variations of fundamentals/harmonics across bandwidth
    • 此时,不能用 constant HRR (harmonic rejection ratio) 进行描述
    • 可使用 average/worst-case HRR
  • Largest harmonics of multiplier

    • May not be adjacent harmonics N±1
    • Attenuated by PA, LNA, TX/RX antennas
  • PA/LNA nonlinearity

    • Can significantly change across bandwidth
    • Frequency-dependent P 1 d B P_{1dB} P1dB makes analysis intractable
    • 解决:Use average P1dB for accuracy
    • 接下来的分析会假设 leakage does not saturate LNA
  • Reference signal spurs neglected

    • 本文仅Focus on spurs generated by radar
    • Reference信号中的Spurs: PLL spurs via mechanisms like quantization noise

3 Analysis of FMCW Radar System

利用FMCW雷达的非线性系统模型,研究以下信号的spectral contents:

  • TX输出
  • RX输入
  • IF
3.1 Analysis of Transmitter
  • Frequency multiplier output signal

    • x o u t , M U L ( t ) = a N [ cos ⁡ ( N Φ ) + k r e f cos ⁡ [ ( N ± 1 ) Φ ] ] x_{\mathrm{out}, \mathrm{MUL}}(t)=a_{\mathrm{N}}\left[\cos (N \Phi)+k_{\mathrm{ref}} \cos [(N \pm 1) \Phi]\right] xout,MUL(t)=aN[cos(NΦ)+krefcos[(N±1)Φ]],
    • Desired harmonic N
    • Two adjacent harmonics N±1
    • k r e f k_{\mathrm{ref}} kref related to HRR of multiplier
  • PA nonlinearity model output signal:

    • 3rd order polynomial: N Φ , 3 N Φ , ( N ± 1 ) Φ , ( N ± 2 ) Φ , ( N ± 3 ) Φ , ( 3 N ± 1 ) Φ , ( 3 N ± 2 ) Φ , ( 3 N ± 3 ) Φ N \Phi, 3 N \Phi,(N \pm 1) \Phi,(N \pm 2) \Phi,(N \pm 3) \Phi,(3 N \pm 1) \Phi,(3 N \pm 2) \Phi ,(3 N \pm 3) \Phi NΦ,3NΦ,(N±1)Φ,(N±2)Φ,(N±3)Φ,(3N±1)Φ,(3N±2)Φ,(3N±3)Φ,
    • Generates spectral regrowth
    • Output spectrum 3 times wider than input
  • TX

    • bandwidth allows N and N±1 harmonics
    • Relative attenuation of N±1: ATX
    • A T X , N ± 1 = A T X A_{\mathrm{TX}, \mathrm{N} \pm 1}=A_{\mathrm{TX}} ATX,N±1=ATX
    • (严格来说,TX system是一个动态非线性系统;本文,简化为一个 frequency-independent nonlinear model followed by a linear band-limited frequency response)
  • TX output signal derived using PA model

    • x T X ( t ) = a T X [ cos ⁡ ( N Φ ) + k T X cos ⁡ [ ( N ± 1 ) Φ ] ] x_{\mathrm{TX}}(t)=a_{\mathrm{TX}}\left[\cos (N \Phi)+k_{\mathrm{TX}} \cos [(N \pm 1) \Phi]\right] xTX(t)=aTX[cos(NΦ)+kTXcos[(N±1)Φ]],
    • 其中: a T X = α 1 , P A A i n + 3 4 ( 1 + 6 k r e f 2 ) α 3 , P A A i n 3 a_{\mathrm{TX}}=\alpha_{1, \mathrm{PA}} A_{\mathrm{in}}+\frac{3}{4}\left(1+6 k_{\mathrm{ref}}^2\right) \alpha_{3, \mathrm{PA}} A_{\mathrm{in}}^3 aTX=α1,PAAin+43(1+6kref2)α3,PAAin3, k T X = ( α 1 , P A A i n + 9 4 ( 1 + k r e f 2 ) α 3 , P A A i n 3 α 1 , P A A i n + 3 4 ( 1 + 6 k r e f 2 ) α 3 , P A A i n 3 ) A T X k r e f k_{\mathrm{TX}}=\left(\frac{\alpha_{1, \mathrm{PA}} A_{\mathrm{in}}+\frac{9}{4}\left(1+k_{\mathrm{ref}}^2\right) \alpha_{3, \mathrm{PA}} A_{\mathrm{in}}^3}{\alpha_{1, \mathrm{PA}} A_{\mathrm{in}}+\frac{3}{4}\left(1+6 k_{\mathrm{ref}}^2\right) \alpha_{3, \mathrm{PA}} A_{\mathrm{in}}^3}\right) A_{\mathrm{TX}} k_{\mathrm{ref}} kTX=(α1,PAAin+43(1+6kref2)α3,PAAin3α1,PAAin+49(1+kref2)α3,PAAin3)ATXkref.
    • Includes fundamental and harmonic components
    • Harmonics level k T X < k r e f k_{TX} < k_{ref} kTX<kref ⇒ \Rightarrow 意味着 TX输出时,谐波水平降低
    • 即:在非线性区域驱动PA,以减轻频率乘法器产生的谐波 + 提高PA效率 是有益的。
  • Key insights:

    • PA nonlinearity decreases harmonics level

      🚩 Beneficial to drive PA in nonlinear region

    • TX bandwidth should limit harmonics

      🚩 Filter can further suppress harmonics

3.2 Analysis of Receiver
  • Received signal :

    • Composed of target echo and TX-RX leakage
  • Without leakage signal :

    • LNA output signal derived using LNA nonlinearity model: x o u t , L N A ( t ) = a o u t , L N A [ cos ⁡ [ N Φ ( t − τ R ) ] + k R X cos ⁡ [ ( N ± 1 ) Φ ( t − τ R ) ] ] , \begin{aligned} & x_{\mathrm{out}, \mathrm{LNA}}(t) \\ & =a_{\mathrm{out}, \mathrm{LNA}}\left[\cos \left[N \Phi\left(t-\tau_R\right)\right]+k_{\mathrm{RX}} \cos \left[(N \pm 1) \Phi\left(t-\tau_R\right)\right]\right],\end{aligned} xout,LNA(t)=aout,LNA[cos[NΦ(tτR)]+kRXcos[(N±1)Φ(tτR)]],

    • IF signal
      x I F ( t ) = a I F [ cos ⁡ [ N Ψ 1 ( t ) ] + k r e f k R X cos ⁡ [ ( N ± 1 ) Ψ 1 ( t ) ] ] x_{\mathrm{IF}}(t)=a_{\mathrm{IF}}\left[\cos \left[N \Psi_1(t)\right]+k_{\mathrm{ref}} k_{\mathrm{RX}} \cos \left[(N \pm 1) \Psi_1(t)\right]\right] xIF(t)=aIF[cos[NΨ1(t)]+krefkRXcos[(N±1)Ψ1(t)]]

      Ψ 1 ( t ) = Φ ( t ) − Φ ( t − τ R ) \Psi_1(t)=\Phi(t)-\Phi\left(t-\tau_R\right) Ψ1(t)=Φ(t)Φ(tτR)

      🚩 结论1:

  • Key insights:

    • 结论1:中频处的激励电平低于参考信号的原始谐波电平 (IF spurs level < reference harmonics level)
      k I F ≈ ( 1 − 3 β P i n , L N A P l d B , L N A 1 − β P i n , L N A P l d B , L N A ) ( 1 − 3 β P i n , P A P l d B , P A 1 − β P i n , P A P l d B , P A ) A R X A T X k r e f 2 k_{\mathrm{IF}} \approx\left(\frac{1-3 \beta \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{\mathrm{ldB}, \mathrm{LNA}}}}{1-\beta \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{\mathrm{ldB}, \mathrm{LNA}}}}\right)\left(\frac{1-3 \beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{\mathrm{ldB}, \mathrm{PA}}}}{1-\beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{\mathrm{ldB}, \mathrm{PA}}}}\right) A_{\mathrm{RX}} A_{\mathrm{TX}} k_{\mathrm{ref}}^2 kIF(1βPldB,LNAPin,LNA13βPldB,LNAPin,LNA)(1βPldB,PAPin,PA13βPldB,PAPin,PA)ARXATXkref2.

    • 结论2:中频包含了三个频率分量: f I F 1 = N S τ R f_{\mathrm{IF} 1}=N S \tau_R fIF1=NSτR, f I F 2 = ( N + 1 ) S τ R f_{\mathrm{IF} 2}=(N+1) S \tau_R fIF2=(N+1)SτR, f I F 3 = ( N + 2 ) S τ R f_{\mathrm{IF} 3}=(N+2) S \tau_R fIF3=(N+2)SτR

      ✅ Spurs can cause overlap between IF spectra ⇒ \Rightarrow 降低雷达距离分辨率

图 2


  • With leakage signal:

    • 相当于LNA有两个输入 x in,LNA  ( t ) = x echo  ( t ) + x leak  ( t ) x_{\text {in,LNA }}(t)=x_{\text {echo }}(t)+x_{\text {leak }}(t) xin,LNA (t)=xecho (t)+xleak (t),
    • Leakage and LNA nonlinearity interaction generates extra spurs
    • LNA output signal includes spectral components related to leakage: x o u t , L N A ( t ) G R a T X [ C 1 cos ⁡ [ N Φ ( t − τ R ) ] + C 2 cos ⁡ [ ( N ± 1 ) Φ ( t − τ R ) ] + C 3 cos ⁡ [ N Φ ( t − τ L ) ] + C 4 cos ⁡ [ ( N ± 1 ) Φ ( t − τ L ) ] + C 5 cos ⁡ [ 2 N Φ ( t − τ R ) − N Φ ( t − τ L ) ] + C 6 cos ⁡ [ N Φ ( t − τ R ) − 2 N Φ ( t − τ L ) ] ] , \begin{aligned} & x_{\mathrm{out}, \mathrm{LNA}}(t) \\ & \qquad G_R a_{\mathrm{TX}}\left[C_1 \cos \left[N \Phi\left(t-\tau_R\right)\right]\right. \\ & \quad+C_2 \cos \left[(N \pm 1) \Phi\left(t-\tau_R\right)\right] \\ & \quad+C_3 \cos \left[N \Phi\left(t-\tau_L\right)\right]+C_4 \cos \left[(N \pm 1) \Phi\left(t-\tau_L\right)\right] \\ & \quad+C_5 \cos \left[2 N \Phi\left(t-\tau_R\right)-N \Phi\left(t-\tau_L\right)\right] \\ & \left.\quad+C_6 \cos \left[N \Phi\left(t-\tau_R\right)-2 N \Phi\left(t-\tau_L\right)\right]\right],\end{aligned} xout,LNA(t)GRaTX[C1cos[NΦ(tτR)]+C2cos[(N±1)Φ(tτR)]+C3cos[NΦ(tτL)]+C4cos[(N±1)Φ(tτL)]+C5cos[2NΦ(tτR)NΦ(tτL)]+C6cos[NΦ(tτR)2NΦ(tτL)]],
    • IF signal x I F ( t ) ≈ a I F [ C 1 cos ⁡ [ N Ψ 1 ( t ) ] + C 2 k r e f cos ⁡ [ ( N ± 1 ) Ψ 1 ( t ) ] + C 3 cos ⁡ [ N Ψ 2 ( t ) ] + C 4 k r e f cos ⁡ [ ( N ± 1 ) Ψ 2 ( t ) ] + C 5 cos ⁡ [ N Ψ 3 ( t ) ] + C 6 cos ⁡ [ N Ψ 4 ( t ) ] ] \begin{aligned} x_{\mathrm{IF}}(t) \approx & a_{\mathrm{IF}}\left[C_1 \cos \left[N \Psi_1(t)\right]+C_2 k_{\mathrm{ref}} \cos \left[(N \pm 1) \Psi_1(t)\right]\right. \\ & +C_3 \cos \left[N \Psi_2(t)\right]+C_4 k_{\mathrm{ref}} \cos \left[(N \pm 1) \Psi_2(t)\right] \\ & \left.+C_5 \cos \left[N \Psi_3(t)\right]+C_6 \cos \left[N \Psi_4(t)\right]\right]\end{aligned} xIF(t)aIF[C1cos[NΨ1(t)]+C2krefcos[(N±1)Ψ1(t)]+C3cos[NΨ2(t)]+C4krefcos[(N±1)Ψ2(t)]+C5cos[NΨ3(t)]+C6cos[NΨ4(t)]]
  • The Spurs level in the IF:

    • k I F ≈ [ 1 + r 2 − β ( 3 + 2 r 2 ) P i n , L N A P 1 d B , L N A 1 + r 2 − β ( 1 + 2 r 2 ) P i n , L N A P 1 d B , L N A ] [ 1 − 3 β P i n , P A P d d B , P A 1 − β P i n , P A P 1 d B , P A ] × A R X A T X k r e f 2 . \begin{gathered}k_{\mathrm{IF}} \approx\left[\frac{1+r^2-\beta\left(3+2 r^2\right) \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{1 \mathrm{~dB}, \mathrm{LNA}}}}{1+r^2-\beta\left(1+2 r^2\right) \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{1 \mathrm{~dB}, \mathrm{LNA}}}}\right]\left[\frac{1-3 \beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{\mathrm{ddB}, \mathrm{PA}}}}{1-\beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{1 \mathrm{~dB}, \mathrm{PA}}}}\right] \\ \times A_{\mathrm{RX}} A_{\mathrm{TX}} k_{\mathrm{ref}}^2 .\end{gathered} kIF 1+r2β(1+2r2)P1 dB,LNAPin,LNA1+r2β(3+2r2)P1 dB,LNAPin,LNA 1βP1 dB,PAPin,PA13βPddB,PAPin,PA ×ARXATXkref2.

    • 取决于:

      Reference harmonics

      Leakage signal power

      PA/LNA nonlinearity

      TX/RX bandwidth

      IF filter attenuation

    • PA和LNA工作在线性功率范围时 (即 P i n , P A ≪ P 1 d B , P A P_{\mathrm{in}, \mathrm{PA}} \ll P_{1 \mathrm{~dB}, \mathrm{PA}} Pin,PAP1 dB,PA and P i n , L N A ≪ P 1 d B , L N A P_{\mathrm{in}, \mathrm{LNA}} \ll P_{1 \mathrm{~dB}, \mathrm{LNA}} Pin,LNAP1 dB,LNA):

      k I F ≈ A R X A T X k r e f 2 k_{\mathrm{IF}} \approx A_{\mathrm{RX}} A_{\mathrm{TX}} k_{\mathrm{ref}}^2 kIFARXATXkref2.

      🚩 ⇒ \Rightarrow PA和LNA的非线性有利于降低谐波 (因为上式中的前两项总是小于1)

  • Leakage signal

    • Introduces new undesired components

    • 如下图Fig 6所示

    • 该理论能够指导:当给定相对泄露功率时,所需要的IF BPF阻带衰减

      A I F , L / H A_{IF,L/H} AIF,L/H 需使得 k I F , I I < k I F k_{\mathrm{IF}, \mathrm{II}}<k_{\mathrm{IF}} kIF,II<kIF & k I F , I V < k I F k_{\mathrm{IF}, \mathrm{IV}}<k_{\mathrm{IF}} kIF,IV<kIF

在这里插入图片描述

图 3

3.3 Radar Dynamic Range
  • Radar dynamic range (DR) :

    • D R n o i s e DR_{noise} DRnoise : Difference between RX signal power and noise floor

    • D R s p u r DR_{spur} DRspur (DR = D R s p u r DR_{spur} DRspur, 如果spur功率高于噪声功率): Difference between signal power and maximum spur level

  • DR can be maximized by:

    • Limiting largest spur below noise floor

    • D R s p u r = D R n o i s e DR_{spur} = DR_{noise} DRspur=DRnoise

  • D R s p u r DR_{spur} DRspur can be derived as:

    • − 20 log ⁡ 10 ( k I F , max ⁡ ) = P R X , max ⁡ + 174 − N F − 10 log ⁡ 10 ( B n ) -20 \log _{10}\left(k_{\mathrm{IF}, \max }\right)=P_{\mathrm{RX}, \max }+174-N F-10 \log _{10}\left(B_n\right) 20log10(kIF,max)=PRX,max+174NF10log10(Bn),

    • P R X , m a x P_{RX,max} PRX,max: Maximum RX input power

    • N F NF NF: Noise figure

    • B n B_n Bn: Noise bandwidth

    • k I F , max ⁡ k_{\mathrm{IF}, \max } kIF,max: Maximum spur level in IF

  • 上述对DR的限制能够作为约束计算如下参数:

    • Frequency multiplier harmonics

    • TX-RX leakage power

    • PA/LNA nonlinearity

4 Simulations and Discussions

4.1 Simulation Setup
  • 140 GHz chirp signal, 5 GHz bandwidth
  • ×8 frequency multiplier (17.5G reference signal) with -20 dBc harmonics
  • ADS and MATLAB used for TX/RX circuit modeling
  • Target: at 10 m range
4.2 Radar IF Spectrum
  • Compared theory and simulations for various nonlinearities

  • Impact of circuit nonlinearities on radar IF spectrum

在这里插入图片描述

  • Impact of leakage signal:
    • ≤0.5 dB difference up to 0 dB leakage power
    • Discrepancy increases to 2-3 dB at higher leakage
    • Extra spur observed besides two harmonic spurs
    • Amplitude matches theory
    • Location depends on leakage delay

在这里插入图片描述

Developed model provides accurate results

4.3 Radar Range-Doppler Diagram
  • Shows probability of false alarm due to spurs
  • Reduced with PA/LNA nonlinearity
  • Leakage signal spur increases false alarm

在这里插入图片描述

  • Developed theory provides:
    • Guidelines for IF filter attenuation
    • Required harmonic/leakage/nonlinearity levels

5 Conclusion

  • 本文为FMCW毫米波系统的分析提供了一个非线性模型
  • 模型考虑了收发机的多个组件带来的影响
  • 能够预测雷达IF中Spurs的频率和幅度,为电路设计提供参考

这篇关于TRS 2023 | Spurs in Millimeter-Wave FMCW Radar System-on-Chip的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/320988

相关文章

CSP 2023 提高级第一轮 CSP-S 2023初试题 完善程序第二题解析 未完

一、题目阅读 (最大值之和)给定整数序列 a0,⋯,an−1,求该序列所有非空连续子序列的最大值之和。上述参数满足 1≤n≤105 和 1≤ai≤108。 一个序列的非空连续子序列可以用两个下标 ll 和 rr(其中0≤l≤r<n0≤l≤r<n)表示,对应的序列为 al,al+1,⋯,ar​。两个非空连续子序列不同,当且仅当下标不同。 例如,当原序列为 [1,2,1,2] 时,要计算子序列 [

Partical System

创建"粒子系统物体"(点击菜单GameObject -> Create Other -> Particle System) 添加"粒子系统组件"(点击Component -> Effects  ->Particle System) 粒子系统检视面板  点击粒子系统检视面板的右上角的"+"来增加新的模块。(Show All Modules:显示全部) 初始化模块: •

小技巧绕过Sina Visitor System(新浪访客系统)

0x00 前言 一直以来,爬虫与反爬虫技术都时刻进行着博弈,而新浪微博作为一个数据大户更是在反爬虫上不遗余力。常规手段如验证码、封IP等等相信很多人都见识过…… 当然确实有需要的话可以通过新浪开放平台提供的API进行数据采集,但是普通开发者的权限比较低,限制也比较多。所以如果只是做一些简单的功能还是爬虫比较方便~ 应该是今年的早些时候,新浪引入了一个Sina Visitor Syst

HNU-2023电路与电子学-实验3

写在前面: 一、实验目的 1.了解简易模型机的内部结构和工作原理。 2.分析模型机的功能,设计 8 重 3-1 多路复用器。 3.分析模型机的功能,设计 8 重 2-1 多路复用器。 4.分析模型机的工作原理,设计模型机控制信号产生逻辑。 二、实验内容 1.用 VERILOG 语言设计模型机的 8 重 3-1 多路复用器; 2.用 VERILOG 语言设计模型机的 8 重 2-1 多

System.getProperties().

Java.version Java 运行时环境版本 java.vendor Java 运行时环境供应商 java.vendor.url Java 供应商的 URL java.home Java 安装目录 java.vm.specification.version Java 虚拟机规范版本 java.vm.specification.vendor

12C 新特性,MOVE DATAFILE 在线移动 包括system, 附带改名 NID ,cdb_data_files视图坏了

ALTER DATABASE MOVE DATAFILE  可以改名 可以move file,全部一个命令。 resue 可以重用,keep好像不生效!!! system照移动不误-------- SQL> select file_name, status, online_status from dba_data_files where tablespace_name='SYSTEM'

android6/7 system打包脚本

1.android5打包system就是网站上常见的制作ROM必备的解包打包system脚本 指令如下:mkuserimg.sh -s out/target/product/$TARGET_PRODUCT/system out/target/product/$TARGET_PRODUCT/obj/PACKAGING/systemimage_intermediates/system.img

android打包解包boot.img,system.img

原帖地址:http://www.52pojie.cn/thread-488025-1-1.html 转载Mark一下,日后研究 最近工作需要对boot.img,system.img进行破解。顺便将心得分享一下。 我的工作环境是在linux下的。所以工具都是针对linux的。 boot.img破解相关工具: 1、split_boot    perl脚本 2、boot_i

MTK Android P/Q system/vendor/super快速打包

一、Android 新版本默认开启了动态分区,把system vendor  product等分区打包成一个super分区。这对于我们使用替换分区的方法来排查问题不是很方便,直接替换一个super也不知道到底是哪个部分导致的。所以我们需要自己制作super.img来缩小范围。下面讲讲如何快速生成system、vendor、super,以及vbmeta(校验image,不匹配可能会导致不开机) 二

Linux函数fcntl/system学习

本文针对项目中用到的几个函数进行详细分析,并尽可能的添加示例进行验证学习。比如fcntl/ioctl函数、system/exec函数、popen/pclose函数、mmap函数等。 重点参考了《UNP》和《Linux程序设计》第四版。 一、fcntl函数 fcntl函数可以改变或者查看已打开文件的性质。该函数的定义如下: #include <fcntl.h> int fcntl(