帕金森定律_通过图像分析对帕金森病进行分类

2023-11-01 04:30

本文主要是介绍帕金森定律_通过图像分析对帕金森病进行分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

帕金森定律

应用计算机视觉 (Applied Computer Vision)

简介 (Introduction)

Parkinson’s disease is often associated with movement disorder symptoms such as tremors and rigidity. These can have a noticeable effect on the handwriting and sketching (drawing)of a person suffering from early stages of the disease [1]. Micrographia, are abnormally small undulations in a persons handwriting, however, have claimed to be difficult to interpret due to the variability in one’s developed handwriting, language, proficiency and education etc [1]. As such, a study conducted in 2017 aimed to improve the diagnosis through a standardized analysis using spirals and waves. In this series of posts, we will analyze the raw images collected in that study and see if we can create a classifier for a patient having Parkinson’s, and draw some conclusions along the way. The data we will be using is hosted on Kaggle [2] with special thanks to Kevin Mader for sharing the dataset upload.

P arkinson病常与运动障碍症状,如震颤和刚性有关。 这些可以对患有该疾病早期阶段的人的笔迹和草图(绘画)产生显着影响[1]。 显微照相术是人类笔迹中异常小的波动,然而,由于人的笔迹,语言,熟练程度和受教育程度等方面的差异,据称难以解释。 因此,2017年进行的一项研究旨在通过使用螺旋和波浪的标准化分析来改善诊断。 在这一系列文章中,我们将分析该研究收集的原始图像,看看是否可以为患有帕金森氏症的患者创建分类器,并一路得出结论。 我们将使用的数据托管在Kaggle [2]上,特别感谢Kevin Mader分享了数据集上传。

Image for post
Image from author. Sample images of the data we will be using.
图片来自作者。 我们将使用的数据的样本图像。

In this part 1, we will be conducting some exploratory data analysis and pre-processing the images to create some features that will hopefully be helpful in classification. I am choosing to NOT use a convolutional neural network (CNN) to simply classify the images as this will be black box — without any metric into the underlying differences between the curves/sketches. Instead, we are not simply performing a task of classifying but trying to use image processing to understand and quantify the differences. In a subsequent post, I will compare with a CNN.

在第1部分中,我们将进行一些探索性数据分析并对图像进行预处理,以创建一些有望对分类有所帮助的功能。 我选择不使用卷积神经网络(CNN)来对图像进行简单分类,因为这将是黑盒-曲线/草图之间的潜在差异没有任何度量标准。 相反,我们不仅仅是执行分类任务,而是尝试使用图像处理来理解和量化差异。 在后续文章中,我将与CNN进行比较。

演示地址

From Giphy
从吉菲

Before we begin, disclaimer that this is not meant to be any kind of medical study or test. Please refer to the original paper for details on the actual experiment, which I was not a part of.Zham P, Kumar DK, Dabnichki P, Poosapadi Arjunan S, Raghav S. Distinguishing Different Stages of Parkinson’s Disease Using Composite Index of Speed and Pen-Pressure of Sketching a Spiral. Front Neurol. 2017;8:435. Published 2017 Sep 6. doi:10.3389/fneur.2017.00435

在我们开始之前,请声明这并不意味着要进行任何医学研究或测试。 请参考原始文件的详细信息,实际的实验,我是不是部分of.Zham P,库马尔DK,Dabnichki P,Poosapadi阿晶南S, 帕金森氏病的使用速度和笔的综合指数拉哈夫S. 区分不同阶段-绘制螺旋线的压力 。 前神经元。 2017; 8:435。 2017年9月6日发布。doi:10.3389 / fneur.2017.00435

探索性数据分析 (Exploratory Data Analysis)

First, let us take a look at the images, perform some basic segmentation and start poking around with some potential features of interest. We will be using pandas throughout to store the images and information. For those of you questioning whether you will read this section here is what we will get into: - Thresholding and cleaning- Thi


http://www.taodudu.cc/news/show-8116753.html

相关文章:

  • 手抖头抖一定就是帕金森吗?
  • 当心宝宝咳嗽引发肺炎
  • 多节点OpenStack Charms 部署指南0.0.1.dev--43--使用juju将charmed k8s部署在openstack上
  • K8S v1.17.17KubeEdge v1.7部署指南+kubeedge-counter-demo示例
  • mysql5.1非安装zip文件版安装指南
  • 保姆级 Kubernetes 多租户虚拟集群平台 vcluster 使用指南(全网最详中文教程)
  • 系列教程|Apache Doris ODBC 外表使用指南之 Oracle 外表(四)
  • Kubernetes快速上手指南,让你所见即所得
  • DPDK快速上手指南(18.02)
  • kubespray部署k8s 1.26集群指南丨Kubernetes
  • DPDK: Getting Started Guide for Linux(Linux入门指南) 中英对照
  • 基于Ubuntu下安装kubernetes集群指南
  • Python3爬虫编程学习笔记(七)实战练习:爬取同花顺国内股票信息
  • 微信小程序学习(六):隐藏单个页面的标题栏(导航栏)
  • Mac小技巧之如何开启mac电脑上dock栏的放大功能?
  • 网页标题栏(title)加入图标(icon)
  • Ubuntu GNOME去除顶栏和窗口标题栏方法(亲测可用)
  • 个人读书总结 —— 目录
  • 我的读书计划(持续更新中......)
  • 2018后半年个人计划
  • 公元二零一三之个人读书计划
  • 个人学习计划笔记
  • 2018学习计划
  • 2017秋季个人阅读计划
  • 老域名扫描软件-老域名采集挖掘工具
  • 老域名的排名优势与选择技巧
  • seo老域名的好处与老域名挖掘实操技巧
  • 挖掘老域名的技巧,什么样的seo老域名有价值?
  • 计算机双学位申请原因,双学位申请书
  • Coursera 助学金模板
  • 这篇关于帕金森定律_通过图像分析对帕金森病进行分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



    http://www.chinasem.cn/article/320487

    相关文章

    基于人工智能的图像分类系统

    目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

    认识、理解、分类——acm之搜索

    普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

    性能分析之MySQL索引实战案例

    文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

    【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

    ✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

    业务中14个需要进行A/B测试的时刻[信息图]

    在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

    SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

    查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

    MOLE 2.5 分析分子通道和孔隙

    软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

    衡石分析平台使用手册-单机安装及启动

    单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

    线性因子模型 - 独立分量分析(ICA)篇

    序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

    【软考】希尔排序算法分析

    目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in