本文主要是介绍牛客-筛子游戏 (概率dp),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目链接
题解:
设 d p [ i ] dp[i] dp[i] 表示当前分数为 i i i 要达到目标的期望,则:
d p [ i ] = ∑ k = 3 k 1 + k 2 + k 3 ( p [ k ] ⋅ d p [ i + k ] ) + p [ 0 ] ⋅ d p [ 0 ] + 1 dp[i]=\sum_{k=3}^{k1+k2+k3} (p[k] \cdot dp[i+k])+ p[0] \cdot dp[0] +1 dp[i]=∑k=3k1+k2+k3(p[k]⋅dp[i+k])+p[0]⋅dp[0]+1,接下来的构造非常的妙。
设 d p [ i ] = a [ i ] ⋅ d p [ 0 ] + b [ i ] dp[i]=a[i] \cdot dp[0]+b[i] dp[i]=a[i]⋅dp[0]+b[i],那么式子可以变成:
d p [ i ] = ∑ k = 3 k 1 + k 2 + k 3 ( p [ k ] ⋅ a [ i + k ] ⋅ d p [ 0 ] + p [ k ] ⋅ b [ i + k ] ) + p [ 0 ] ⋅ d p [ 0 ] + 1 dp[i]=\sum_{k=3}^{k1+k2+k3}(p[k] \cdot a[i+k] \cdot dp[0] +p[k] \cdot b[i+k]) +p[0] \cdot dp[0]+1 dp[i]=∑k=3k1+k2+k3(p[k]⋅a[i+k]⋅dp[0]+p[k]⋅b[i+k])+p[0]⋅dp[0]+1
那么可以推出: a [ i ] = ∑ k = 3 k 1 + k 2 + k 3 ( p [ k ] ⋅ a [ i + k ] ) + d p [ 0 ] a[i]=\sum_{k=3}^{k1+k2+k3} (p[k] \cdot a[i+k])+dp[0] a[i]=∑k=3k1+k2+k3(p[k]⋅a[i+k])+dp[0], b [ i ] = ∑ k = 3 k 1 + k 2 + k 3 ( p [ k ] ⋅ b [ i + k ] ) + 1 b[i]=\sum_{k=3}^{k1+k2+k3} (p[k] \cdot b[i+k])+1 b[i]=∑k=3k1+k2+k3(p[k]⋅b[i+k])+1
根据递推式,就可以从后往前求出 a [ 0 ] a[0] a[0] 和 b [ 0 ] b[0] b[0] , d p [ 0 ] = b [ 0 ] / ( 1 − a [ 0 ] ) dp[0]=b[0]/(1-a[0]) dp[0]=b[0]/(1−a[0])
代码
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<stack>
#include<set>
#include<ctime>
#define iss ios::sync_with_stdio(false)
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int,int>pii;
const int MAXN=5e2+500;
const int mod=1004535809;
const int inf=0x3f3f3f3f;
double p[MAXN];
double aa[MAXN];
double bb[MAXN];
int main()
{int n,k1,k2,k3,a,b,c;cin>>n>>k1>>k2>>k3>>a>>b>>c;p[0]=1.0/(k1*k2*k3);for(int i=3;i<=k1+k2+k3;i++){int cnt=0;for(int t1=1;t1<=k1;t1++){for(int t2=1;t2<=k2;t2++){for(int t3=1;t3<=k3;t3++){if(t1==a&&t2==b&&t3==c) continue;if(t1+t2+t3==i) cnt++;}}}p[i]=1.0*cnt/(k1*k2*k3);}for(int i=n;i>=0;i--){for(int k=3;k<=k1+k2+k3;k++){aa[i]+=aa[i+k]*p[k];bb[i]+=p[k]*bb[i+k];}aa[i]+=p[0];bb[i]+=1.0;}double ans=bb[0]/(1-aa[0]);printf("%.8lf\n",ans);
}
这篇关于牛客-筛子游戏 (概率dp)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!