Waymo数据集介绍(部分下载,仅用于学习)

2023-11-01 02:30

本文主要是介绍Waymo数据集介绍(部分下载,仅用于学习),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

waymo提供了两种数据集,motion与perception两种,请注意,本篇为Perception Dataset v1.2Motion Dataset v1.1版本

其中motion是鸟瞰图,官网中有介绍,主要用于轨迹预测之类的任务

perception主要用于目标检测跟踪之类的任务,是第一视角,有相机和雷达信息,并且在github上有公开的读取数据方法,另外,在读取perception数据时需要安装waymo-open-dataset-tf这个库,安装不上请用清华源,具体请按照官方quick_start教程,另外github有许多已经集成许多功能的代码,搜索waymo就有。

quick_start:

waymo-open-dataset/quick_start.md at master · waymo-research/waymo-open-dataset · GitHub

 而motion读取不需要这些,主只需要安装tensorflow以及一些必要的库就行即可

import math
import os
import uuid
import timefrom matplotlib import cm
import matplotlib.animation as animation
import matplotlib.pyplot as pltimport numpy as np
from IPython.display import HTML
import itertools
import tensorflow as tffrom google.protobuf import text_format
from waymo_open_dataset.metrics.ops import py_metrics_ops
from waymo_open_dataset.metrics.python import config_util_py as config_util
from waymo_open_dataset.protos import motion_metrics_pb2# Example field definition
roadgraph_features = {'roadgraph_samples/dir':tf.io.FixedLenFeature([20000, 3], tf.float32, default_value=None),'roadgraph_samples/id':tf.io.FixedLenFeature([20000, 1], tf.int64, default_value=None),'roadgraph_samples/type':tf.io.FixedLenFeature([20000, 1], tf.int64, default_value=None),'roadgraph_samples/valid':tf.io.FixedLenFeature([20000, 1], tf.int64, default_value=None),'roadgraph_samples/xyz':tf.io.FixedLenFeature([20000, 3], tf.float32, default_value=None),
}# Features of other agents.
state_features = {'state/id':tf.io.FixedLenFeature([128], tf.float32, default_value=None),'state/type':tf.io.FixedLenFeature([128], tf.float32, default_value=None),'state/is_sdc':tf.io.FixedLenFeature([128], tf.int64, default_value=None),'state/tracks_to_predict':tf.io.FixedLenFeature([128], tf.int64, default_value=None),'state/current/bbox_yaw':tf.io.FixedLenFeature([128, 1], tf.float32, default_value=None),'state/current/height':tf.io.FixedLenFeature([128, 1], tf.float32, default_value=None),'state/current/length':tf.io.FixedLenFeature([128, 1], tf.float32, default_value=None),'state/current/timestamp_micros':tf.io.FixedLenFeature([128, 1], tf.int64, default_value=None),'state/current/valid':tf.io.FixedLenFeature([128, 1], tf.int64, default_value=None),'state/current/vel_yaw':tf.io.FixedLenFeature([128, 1], tf.float32, default_value=None),'state/current/velocity_x':tf.io.FixedLenFeature([128, 1], tf.float32, default_value=None),'state/current/velocity_y':tf.io.FixedLenFeature([128, 1], tf.float32, default_value=None),'state/current/width':tf.io.FixedLenFeature([128, 1], tf.float32, default_value=None),'state/current/x':tf.io.FixedLenFeature([128, 1], tf.float32, default_value=None),'state/current/y':tf.io.FixedLenFeature([128, 1], tf.float32, default_value=None),'state/current/z':tf.io.FixedLenFeature([128, 1], tf.float32, default_value=None),'state/future/bbox_yaw':tf.io.FixedLenFeature([128, 80], tf.float32, default_value=None),'state/future/height':tf.io.FixedLenFeature([128, 80], tf.float32, default_value=None),'state/future/length':tf.io.FixedLenFeature([128, 80], tf.float32, default_value=None),'state/future/timestamp_micros':tf.io.FixedLenFeature([128, 80], tf.int64, default_value=None),'state/future/valid':tf.io.FixedLenFeature([128, 80], tf.int64, default_value=None),'state/future/vel_yaw':tf.io.FixedLenFeature([128, 80], tf.float32, default_value=None),'state/future/velocity_x':tf.io.FixedLenFeature([128, 80], tf.float32, default_value=None),'state/future/velocity_y':tf.io.FixedLenFeature([128, 80], tf.float32, default_value=None),'state/future/width':tf.io.FixedLenFeature([128, 80], tf.float32, default_value=None),'state/future/x':tf.io.FixedLenFeature([128, 80], tf.float32, default_value=None),'state/future/y':tf.io.FixedLenFeature([128, 80], tf.float32, default_value=None),'state/future/z':tf.io.FixedLenFeature([128, 80], tf.float32, default_value=None),'state/past/bbox_yaw':tf.io.FixedLenFeature([128, 10], tf.float32, default_value=None),'state/past/height':tf.io.FixedLenFeature([128, 10], tf.float32, default_value=None),'state/past/length':tf.io.FixedLenFeature([128, 10], tf.float32, default_value=None),'state/past/timestamp_micros':tf.io.FixedLenFeature([128, 10], tf.int64, default_value=None),'state/past/valid':tf.io.FixedLenFeature([128, 10], tf.int64, default_value=None),'state/past/vel_yaw':tf.io.FixedLenFeature([128, 10], tf.float32, default_value=None),'state/past/velocity_x':tf.io.FixedLenFeature([128, 10], tf.float32, default_value=None),'state/past/velocity_y':tf.io.FixedLenFeature([128, 10], tf.float32, default_value=None),'state/past/width':tf.io.FixedLenFeature([128, 10], tf.float32, default_value=None),'state/past/x':tf.io.FixedLenFeature([128, 10], tf.float32, default_value=None),'state/past/y':tf.io.FixedLenFeature([128, 10], tf.float32, default_value=None),'state/past/z':tf.io.FixedLenFeature([128, 10], tf.float32, default_value=None),
}traffic_light_features = {'traffic_light_state/current/state':tf.io.FixedLenFeature([1, 16], tf.int64, default_value=None),'traffic_light_state/current/valid':tf.io.FixedLenFeature([1, 16], tf.int64, default_value=None),'traffic_light_state/current/x':tf.io.FixedLenFeature([1, 16], tf.float32, default_value=None),'traffic_light_state/current/y':tf.io.FixedLenFeature([1, 16], tf.float32, default_value=None),'traffic_light_state/current/z':tf.io.FixedLenFeature([1, 16], tf.float32, default_value=None),'traffic_light_state/past/state':tf.io.FixedLenFeature([10, 16], tf.int64, default_value=None),'traffic_light_state/past/valid':tf.io.FixedLenFeature([10, 16], tf.int64, default_value=None),'traffic_light_state/past/x':tf.io.FixedLenFeature([10, 16], tf.float32, default_value=None),'traffic_light_state/past/y':tf.io.FixedLenFeature([10, 16], tf.float32, default_value=None),'traffic_light_state/past/z':tf.io.FixedLenFeature([10, 16], tf.float32, default_value=None),
}
dir = '文件位置'
features_description = {}
features_description.update(roadgraph_features)
features_description.update(state_features)
features_description.update(traffic_light_features)dataset = tf.data.TFRecordDataset(dir, compression_type='')
data = next(dataset.as_numpy_iterator())
parsed = tf.io.parse_single_example(data, features_description)def create_figure_and_axes(size_pixels):"""Initializes a unique figure and axes for plotting."""fig, ax = plt.subplots(1, 1, num=uuid.uuid4())# Sets output image to pixel resolution.dpi = 100size_inches = size_pixels / dpifig.set_size_inches([size_inches, size_inches])fig.set_dpi(dpi)fig.set_facecolor('white')ax.set_facecolor('white')ax.xaxis.label.set_color('black')ax.tick_params(axis='x', colors='black')ax.yaxis.label.set_color('black')ax.tick_params(axis='y', colors='black')fig.set_tight_layout(True)ax.grid(False)return fig, axdef fig_canvas_image(fig):"""Returns a [H, W, 3] uint8 np.array image from fig.canvas.tostring_rgb()."""# Just enough margin in the figure to display xticks and yticks.fig.subplots_adjust(left=0.08, bottom=0.08, right=0.98, top=0.98, wspace=0.0, hspace=0.0)fig.canvas.draw()data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)return data.reshape(fig.canvas.get_width_height()[::-1] + (3,))def get_colormap(num_agents):"""Compute a color map array of shape [num_agents, 4]."""colors = cm.get_cmap('jet', num_agents)colors = colors(range(num_agents))np.random.shuffle(colors)return colorsdef get_viewport(all_states, all_states_mask):"""Gets the region containing the data.Args:all_states: states of agents as an array of shape [num_agents, num_steps,2].all_states_mask: binary mask of shape [num_agents, num_steps] for`all_states`.Returns:center_y: float. y coordinate for center of data.center_x: float. x coordinate for center of data.width: float. Width of data."""valid_states = all_states[all_states_mask]all_y = valid_states[..., 1]all_x = valid_states[..., 0]center_y = (np.max(all_y) + np.min(all_y)) / 2center_x = (np.max(all_x) + np.min(all_x)) / 2range_y = np.ptp(all_y)range_x = np.ptp(all_x)width = max(range_y, range_x)return center_y, center_x, widthdef visualize_one_step(states,mask,roadgraph,title,center_y,center_x,width,color_map,size_pixels=1000):"""Generate visualization for a single step."""# Create figure and axes.fig, ax = create_figure_and_axes(size_pixels=size_pixels)# Plot roadgraph.rg_pts = roadgraph[:, :2].Tax.plot(rg_pts[0, :], rg_pts[1, :], 'k.', alpha=1, ms=2)masked_x = states[:, 0][mask]masked_y = states[:, 1][mask]colors = color_map[mask]# Plot agent current position.ax.scatter(masked_x,masked_y,marker='o',linewidths=3,color=colors,)# Title.ax.set_title(title)# Set axes.  Should be at least 10m on a side and cover 160% of agents.size = max(10, width * 1.0)ax.axis([-size / 2 + center_x, size / 2 + center_x, -size / 2 + center_y,size / 2 + center_y])ax.set_aspect('equal')image = fig_canvas_image(fig)plt.close(fig)return imagedef visualize_all_agents_smooth(decoded_example,size_pixels=1000,
):"""Visualizes all agent predicted trajectories in a serie of images.Args:decoded_example: Dictionary containing agent info about all modeled agents.size_pixels: The size in pixels of the output image.Returns:T of [H, W, 3] uint8 np.arrays of the drawn matplotlib's figure canvas."""# [num_agents, num_past_steps, 2] float32.past_states = tf.stack([decoded_example['state/past/x'], decoded_example['state/past/y']],-1).numpy()past_states_mask = decoded_example['state/past/valid'].numpy() > 0.0# [num_agents, 1, 2] float32.current_states = tf.stack([decoded_example['state/current/x'], decoded_example['state/current/y']],-1).numpy()current_states_mask = decoded_example['state/current/valid'].numpy() > 0.0# [num_agents, num_future_steps, 2] float32.future_states = tf.stack([decoded_example['state/future/x'], decoded_example['state/future/y']],-1).numpy()future_states_mask = decoded_example['state/future/valid'].numpy() > 0.0# [num_points, 3] float32.roadgraph_xyz = decoded_example['roadgraph_samples/xyz'].numpy()num_agents, num_past_steps, _ = past_states.shapenum_future_steps = future_states.shape[1]color_map = get_colormap(num_agents)# [num_agens, num_past_steps + 1 + num_future_steps, depth] float32.all_states = np.concatenate([past_states, current_states, future_states], 1)# [num_agens, num_past_steps + 1 + num_future_steps] float32.all_states_mask = np.concatenate([past_states_mask, current_states_mask, future_states_mask], 1)center_y, center_x, width = get_viewport(all_states, all_states_mask)images = []# Generate images from past time steps.for i, (s, m) in enumerate(zip(np.split(past_states, num_past_steps, 1),np.split(past_states_mask, num_past_steps, 1))):im = visualize_one_step(s[:, 0], m[:, 0], roadgraph_xyz,'past: %d' % (num_past_steps - i), center_y,center_x, width, color_map, size_pixels)images.append(im)# Generate one image for the current time step.s = current_statesm = current_states_maskim = visualize_one_step(s[:, 0], m[:, 0], roadgraph_xyz, 'current', center_y,center_x, width, color_map, size_pixels)images.append(im)# Generate images from future time steps.for i, (s, m) in enumerate(zip(np.split(future_states, num_future_steps, 1),np.split(future_states_mask, num_future_steps, 1))):im = visualize_one_step(s[:, 0], m[:, 0], roadgraph_xyz,'future: %d' % (i + 1), center_y, center_x, width,color_map, size_pixels)images.append(im)return imagesimages = visualize_all_agents_smooth(parsed)def create_animation(images):""" Creates a Matplotlib animation of the given images.Args:images: A list of numpy arrays representing the images.Returns:A matplotlib.animation.Animation.Usage:anim = create_animation(images)anim.save('/tmp/animation.avi')HTML(anim.to_html5_video())"""plt.ioff()fig, ax = plt.subplots()dpi = 100size_inches = 1000 / dpifig.set_size_inches([size_inches, size_inches])plt.ion()def animate_func(i):ax.imshow(images[i])ax.set_xticks([])ax.set_yticks([])ax.grid('off')anim = animation.FuncAnimation(fig, animate_func, frames=len(images) // 2, interval=100)plt.close(fig)return animanim = create_animation(images[::5])
HTML(anim.to_html5_video())

官方给的教程,生成的是一个动画,当然,这些动画没什么用,只需要里面的数据。上面代码主要的读取数据就是这一句,它包含了一个文件的信息,可以debug看一下,包含了许多属性,具体参见此处https://waymo.com/open/data/motion/tfexample,数据中有许多标注的为-1,这些数据没什么用

parsed = tf.io.parse_single_example(data, features_description)

 完整版数据集下载请前往官网下载 https://waymo.com/open/download/

此处只提供小部分用于学习,如有侵权,请及时联系删除

 百度云链接:

perception(v1.2)里面只提供了train的第一个文件

链接:https://pan.baidu.com/s/1PfPnVsWs7H47fi015vKL-g 
提取码:1lzk

motion(v1.1)提供train valid test里面的第一个文件

链接:https://pan.baidu.com/s/1RX4ISe23rkO-7OXM3imFpg 
提取码:frb9

这篇关于Waymo数据集介绍(部分下载,仅用于学习)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/319849

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解