代碼隨想錄算法訓練營|第五十五天|1143.最长公共子序列、1035.不相交的线、53. 最大子序和。刷题心得(c++)

本文主要是介绍代碼隨想錄算法訓練營|第五十五天|1143.最长公共子序列、1035.不相交的线、53. 最大子序和。刷题心得(c++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

讀題

1143.最长公共子序列

自己看到题目的第一想法

看起來跟最長重複子数組很類似,但是要怎麼去推遞推的狀態沒有想法

看完代码随想录之后的想法

看完之後,大概釐清了整體想法,可以想成說,因為我們要考慮的是不連續的子序列,所以會分成兩種狀態,一個是不相同,不相同的話需要看之前的序列有沒有重複,之前包括兩個方面,縱向與橫向關係,要取最大的,因為這個緣故,在相同的時候,因為之前的數都考慮過縱向與橫向的關係,可以直接從左上角跟重複子序列一樣,求出該值。 至於初始化的部分,在定義下標時,i、j都設定為i - 1 或者說 1 ~ i ,讓後續的遞推公式以及初始化都可以比較簡便。

1035.不相交的线

自己看到题目的第一想法

看到這題,看到卡哥的提示,觀察過後其實就跟最長的公共子序列一樣,如果有一個子序列是共有的,那最長的公共子序列一定是可以連接最多不相交的線,整體的概念是一致的。

53. 最大子序和

看完代码随想录之后的想法

其實整體概念跟連續遞增子序有點像,改為將数組變動 dp[i - 1] + nums[i] 以及 nums[i]的差異,看完程式碼後理解上不會太過於困難。

1143.最长公共子序列 - 實作

思路

  1. 定義DP數組以及下標的含意

    dp[i][j] 代表 0~ i - 1 的text1 以及 0 ~ j - 1 的text2 最长公共子序列長度為dp[i][j]

  2. 遞推公式

    分成兩種狀態相同與不相同

    不相同的話需要看之前的序列有沒有重複,之前包括兩個方面,縱向與橫向關係,要取最大的

    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

    相同的時候,因為之前的數都考慮過縱向與橫向的關係,可以直接從左上角跟重複子序列一樣

    dp[i][j] = dp[i - 1][j - 1] + 1;

  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    最少為0,所以初始化為0

  4. 確定遍歷順序

    因為需要左上角的數據來進行遍歷,所以是由前往後。

Code

class Solution {
public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp (text1.size() + 1, vector<int>(text2.size() + 1, 0));for(int i = 1; i < text1.size() + 1; i++) {for(int j = 1; j < text2.size() + 1; j++) {if(text1[i - 1] == text2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}return dp[text1.size()][text2.size()];}
};

1035.不相交的线 - 實作

思路

  1. 定義DP數組以及下標的含意

    dp[i][j] 代表 0~ i - 1 的nums1 以及 0 ~ j - 1 的nums2 最长不相交的线為dp[i][j]

  2. 遞推公式

    分成兩種狀態相同與不相同

    不相同的話需要看之前的序列有沒有重複,之前包括兩個方面,縱向與橫向關係,要取最大的

    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

    相同的時候,因為之前的數都考慮過縱向與橫向的關係,可以直接從左上角跟重複子序列一樣

    dp[i][j] = dp[i - 1][j - 1] + 1;

  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    最少為0,所以初始化為0

  4. 確定遍歷順序

    因為需要左上角的數據來進行遍歷,所以是由前往後。

Code

class Solution {
public:int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));for(int i = 1; i < nums1.size() + 1; i++) {for(int j = 1; j < nums2.size() + 1; j++) {if(nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}return dp[nums1.size()][nums2.size()];}
};

53. 最大子序和 - 實作

思路

  1. 定義DP數組以及下標的含意

    dp[i] 代表 i 之前包含i 的number[i] 結尾的最大子序和是多少

  2. 遞推公式

    當前的数加上前面的數比較大還是當前的數比較大,取大的。

    dp[i] = max(dp[i - 1] + nums[i], nums[i])

    if dp [i] > result 更新result

  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    將數組初始化為最小值,以及result = nums[0]

  4. 確定遍歷順序

    0 到 i 因為需要前面的數據來進行遍歷,所以是由前往後。

Code

class Solution {
public:int maxSubArray(vector<int>& nums) {vector<int> dp (nums.size() + 1, INT_MIN);int result = nums[0];dp[0] = nums[0];for(int i = 1; i < nums.size(); i++ ) {dp[i] = max(dp[i - 1] + nums[i], nums[i]);if(dp[i] > result) result = dp[i];}return result;}
};

總結

自己实现过程中遇到哪些困难

一開始對於最長公共子序列不太了解,但看完講解後,其實就是在重複子序列的基礎上考慮橫向與縱向的關係,以及最大子序和整體很像最長連續子序列,只是思考上需要進行轉換﹐整體而言,今天題目主要是思路上需要做一些改變,不然很容易繞進去。

今日收获,记录一下自己的学习时长

今天大概學習了2hr,整體是很充實的,尤其理解最長公共子序列,在想法上接續到的二題不相交的線就會非常清晰。

相關資料

● 今日学习的文章链接和视频链接

1143.最长公共子序列

视频讲解:动态规划子序列问题经典题目 | LeetCode:1143.最长公共子序列_哔哩哔哩_bilibili

https://programmercarl.com/1143.最长公共子序列.html

1035.不相交的线

视频讲解:动态规划之子序列问题,换汤不换药 | LeetCode:1035.不相交的线_哔哩哔哩_bilibili

https://programmercarl.com/1035.不相交的线.html

53. 最大子序和

视频讲解:看起来复杂,其实是简单动态规划 | LeetCode:53.最大子序和_哔哩哔哩_bilibili

https://programmercarl.com/0053.最大子序和(动态规划).html

这篇关于代碼隨想錄算法訓練營|第五十五天|1143.最长公共子序列、1035.不相交的线、53. 最大子序和。刷题心得(c++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/318690

相关文章

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖