Image Splicing Localization Using Superpixel Segmentation and Noise Level Estimation

本文主要是介绍Image Splicing Localization Using Superpixel Segmentation and Noise Level Estimation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2019 12th International Congress on Image and Signal Processing,
BioMedical Engineering and Informatics (CISP-BMEI)

在这里插入图片描述

根据超像素划分每个图像块,
对每个图像块 求噪声水平,
对于上面的图像块-噪声水平 求聚类

默认,小的聚类是篡改区域,大的聚类是原本的背景。

超像素分割有很多的好处,能够划分边界。使用超像素划分图像直接就简化问题。但是splicing里面也有一些路子很野的,不考虑语义信息,乱篡改图像的,这种情况可能就会出现问题了。 因为此时,篡改区域可能被分到不同的超像素中, 这种情况是可行的,因为是聚类。
但是大面积的篡改会出现问题,二义性的问题。无法分清篡改区域。灾难性的后果是完全预测反了,指标全部飙0.

噪声水平分析:
图像的噪声通常均匀的分布在图像中,如果引入其他图像的图像块,那么splicing 区域的噪声水平将会完全不同。依据此原理,分析篡改的区域。一般是基于块的方法。

在这里插入图片描述

这篇关于Image Splicing Localization Using Superpixel Segmentation and Noise Level Estimation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/317678

相关文章

lvgl8.3.6 控件垂直布局 label控件在image控件的下方显示

在使用 LVGL 8.3.6 创建一个垂直布局,其中 label 控件位于 image 控件下方,你可以使用 lv_obj_set_flex_flow 来设置布局为垂直,并确保 label 控件在 image 控件后添加。这里是如何步骤性地实现它的一个基本示例: 创建父容器:首先创建一个容器对象,该对象将作为布局的基础。设置容器为垂直布局:使用 lv_obj_set_flex_flow 设置容器

MiniCPM-V: A GPT-4V Level MLLM on Your Phone

MiniCPM-V: A GPT-4V Level MLLM on Your Phone 研究背景和动机 现有的MLLM通常需要大量的参数和计算资源,限制了其在实际应用中的范围。大部分MLLM需要部署在高性能云服务器上,这种高成本和高能耗的特点,阻碍了其在移动设备、离线和隐私保护场景中的应用。 文章主要贡献: 提出了MiniCPM-V系列模型,能在移动端设备上部署的MLLM。 性能优越:

IMAGE LIST

   CImageList就是一个容器,用来存储图片资源,方便这些资源被CListBox,CComboBox,CComboBoxEx,CTabCtrl以及CTreeCtrl,CListCtrl等使用。      要使用CImgeList首先要使用它的create函数:      一般用的比较多的是这一个函数,当然,它还有很多重载,自己可以去翻阅msdn.       BOOL

PAT (Advanced Level) Practice——1011,1012

1011:  链接: 1011 World Cup Betting - PAT (Advanced Level) Practice (pintia.cn) 题意及解题思路: 简单来说就是给你3行数字,每一行都是按照W,T,L的顺序给出相应的赔率。我们需要找到每一行的W,T,L当中最大的一个数,累乘的结果再乘以0.65,按照例子写出表达式即可。 同时还需要记录每一次选择的是W,T还是L

【vscode】vscode paste image插件设置

本文首发于 ❄️慕雪的寒舍 vscode编辑md文件的时候,如果想插入图片,自带的粘贴只会粘贴到当前目录下,也没有文件重命名,很不友好。 在扩展商店里面有mushan的Paste Image插件,相比自带的,更加友好一点。但是它的配置把我弄糊涂了,简单测试了一下才明白处理的逻辑。 注意,本文编写的是对mushan的Paste Image插件的教程。 首先是安装这个插件,这个不多说

pytorch时空数据处理4——图像转文本/字幕Image-Captionning(二)

pytorch时空数据处理4——图像转文本/字幕Image-Captionning(二) pytorch时空数据处理4——图像转文本/字幕Image-Captionning(二)DatasetInputs to modelCaption LengthsData pipelineEncoderAttentionDecoder代码数据集初始化 create_input_files.py训练 tr

Show,Attend and Tell: Neural Image Caption Generation with Visual Attention

简单的翻译阅读了一下 Abstract 受机器翻译和对象检测领域最新工作的启发,我们引入了一种基于注意力的模型,该模型可以自动学习描述图像的内容。我们描述了如何使用标准的反向传播技术,以确定性的方式训练模型,并通过最大化变分下界随机地训练模型。我们还通过可视化展示了模型如何能够自动学习将注视固定在显着对象上,同时在输出序列中生成相应的单词。我们通过三个基准数据集(Flickr9k,Flickr

Docker Image 命令

文章目录 目录 文章目录 1 . Docker镜像是什么? 2 . 镜像命令详解 docker images docker tag docker pull docker rmi  docker save 总结 1 . Docker镜像是什么? Docker image 本质上是一个 read-only 只读文件, 这个文件包含了文件系统、 源码、库文件、依赖、工具等一些

flutter Image

Flutter中,Image是一个用于显示图片的控件,可以显示网络图片、本地图片以及Asset中的图片。Image控件支持多种常见的图片格式,例如PNG、JPEG、GIF等。 const Image({super.key,required this.image,this.frameBuilder,this.loadingBuilder,this.errorBuilder,this.seman

C#Bitmap和Image之间的关系

Image 类 Image 是一个抽象基类,它定义了所有图像类型的共同属性和方法。它提供了图像处理的通用接口,比如获取图像的尺寸、像素格式、帧数等。Image 类本身不能被实例化,它只是提供了一个通用的框架,具体的图像类型(如位图、图标、元文件等)需要通过继承 Image 类来实现。Image 类提供了一些通用的方法,如 Save(保存图像到文件)、GetThumbnailImage(获取图像的