关于线性模型的底层逻辑解读 (机器学习 细读01)

2023-10-31 12:01

本文主要是介绍关于线性模型的底层逻辑解读 (机器学习 细读01),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一 多元线性回归

         线性回归是机器学习中 有监督机器学习 下的一种算法。 回归问题主要关注的是因变量(需要预测的值,可以是一个也可以是多个)和一个或多个数值型的自变量(预测变量)之间的关系。

  1. 需要预测的值:即目标变量,target,y,连续值预测变量
  2. 影响目标变量的因素: ... ,可以是连续值也可以是离散值。
  3. 因变量和自变量之间的关系:即模型,model,是我们要求解的。

1.1 简单线性回归

前面提到过,算法说白了就是公式,简单线性回归属于一个算法,它所对应的公式。

        y = wx + b

这个公式中,y 是目标变量即未来要预测的值,x 是影响 y 的因素,w,b 是公式上的参数即要求的模型。其实 b 就是咱们的截距,w 是斜率嘛! 所以很明显如果模型求出来了,未来影响 y 值的未知数就是一个 x 值,也可以说影响 y 值 的因素只有一个,所以这是就叫简单线性回归的原因。

1.2 最优解

  • Actual value: 真实值,一般使用 y 表示。
  • Predicted value预测值,是把已知的 x 带入到公式里面和猜出来的参数 w,b 计算得到的,一般使用 $\hat{y}$表示。
  • Error误差,预测值和真实值的差距,一般使用 \varepsilon表示。
  • 最优解: 尽可能的找到一个模型使得整体的 误差最小,整体的误差通常叫做损失 Loss。
  • Loss: 整体的误差,Loss 通过损失函数 Loss function 计算得到。

1.3 多元线性回归

现实生活中,往往影响结果 y 的因素不止一个,这时 x 就从一个变成了 n 个,X_1.....$X_n$同时简单线性回归的公式也就不在适用了。多元线性回归公式如下:

        $\hat{y} = w_1X_1 + w_2X_2 +....... + w_nX_n + b$

使用向量来表示:

        $\hat{y} = W^TX$

二 高斯函数

2.1 正太分布

正态分布(Normal Distribution),也被称为高斯分布(Gaussian Distribution),正态分布在实际应用中非常有用,因为许多自然现象和人类行为都近似遵循正态分布。例如,身高、体重、智商、测量误差等都可以用正态分布来描述。在统计分析中,许多参数估计和假设检验方法都基于正态分布的假设。在统计建模中,通常默认每次线性模型计算的误差与正确值的误差符合正态分布。基于这一假设,可以通过计算使误差最小的正态分布值来估算线性模型的权重。这种方法有助于拟合模型以更好地解释数据和进行预测。主要特点:

  1. 对称性:正态分布是一个对称分布,其均值、中位数和众数都位于分布的中心,也就是分布的峰值。

  2. 集中趋势:正态分布具有集中趋势,数据点更有可能接近均值,而在离均值越远的地方概率逐渐减小。

  3. 定义性:正态分布由两个参数决定,均值(μ)和方差(σ^2),这些参数决定了分布的中心和分散度。

  4. 标准正态分布:当均值为0,方差为1时,正态分布被称为标准正态分布(Standard Normal Distribution)。标准正态分布的概率密度函数可以用标准正态分布表来查找。

  5. 经典的钟形曲线:正态分布的概率密度函数呈现出典型的钟形曲线,两侧尾部逐渐减小,且在均值处达到峰值。

正态分布的概率密度函数(Probability Density Function)为:

2.2 误差分析

假定所有的样本的误差都是独立的,有上下的震荡,震荡认为是随机变量,足够多的随机变量叠加之后形成的分布,它服从的就是正态分布,因为它是正常状态下的分布,也就是高斯分布!均值是某一个值,方差是某一个值。 方差我们先不管,均值我们总有办法让它去等于零 0 的,因为我们这里是有截距b, 所有误差我们就可以认为是独立分布的,1<=i<=n,服从均值为 0,方差为某定值的高斯分布。机器学习中我们假设误差符合均值为0,方差为定值的正态分布!!!

        $\varepsilon_i = |y_i - \hat{y}|$

正太分布公式

        $f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x - \mu)^2}{2\sigma^2}}$

随着参数μ和σ变化,概率分布也产生变化。 下面重要的步骤来了,我们要把一组数据误差出现的总似然,也就是一组数据之所以对应误差出现的 整体可能性 表达出来了,因为数据的误差我们假设服从一个高斯分布,并且通过截距项来平移整体分布的位置从而使得μ=0,所以样本的误差我们可以表达其概率密度函数的值如下:

        $f(\varepsilon|\mu = 0,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(\varepsilon - 0)^2}{2\sigma^2}}$

误差正太分布,简化去掉均值 μ

        $f(\varepsilon| 0,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{\varepsilon ^2}{2\sigma^2}}$

三 误差总似然

累乘问题:

        $P = \prod\limits_{i = 0}^{n}f(\varepsilon_i|0,\sigma^2) = \prod\limits_{i = 0}^{n}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{\varepsilon_i ^2}{2\sigma^2}}$

根据前面公式 $\varepsilon_i = |y_i - W^Tx_i|$ 可以推导出来如下公式:

        $P = \prod\limits_{i = 0}^{n}f(\varepsilon_i|0,\sigma^2) = \prod\limits_{i = 0}^{n}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y_i - W^Tx_i)^2}{2\sigma^2}}$

公式中的未知变量就是 ,即方程的系数,系数包含截距~如果,把上面当成一个方程,就是概率P关于W的方程!其余符号,都是常量!

        $P_W= \prod\limits_{i = 0}^{n}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y_i - W^Tx_i)^2}{2\sigma^2}}$

通过,求对数把累乘问题,转变为累加问题:

        $log_e(P_W) = log_e(\prod\limits_{i = 0}^{n}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y_i - W^Tx_i)^2}{2\sigma^2}})$

简化:

                        $=\sum\limits_{i = 0}^{n}log_e(\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y_i - W^Tx_i)^2}{2\sigma^2}})$

                        $=\sum\limits_{i = 0}^{n}(log_e\frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^2}\cdot\frac{1}{2}(y_i - W^Tx_i)^2)$

上面公式是最大似然求对数后的变形,其中 $\pi, \sigma$都是常量,而 $(y_i - W^Tx_i)^2$ 肯定大于!上面求最大值问题,即可转变为如下求最小值问题:

        $L(W) = \frac{1}{2}\sum\limits_{i = 0}^n(y^{(i)} - W^Tx^{(i)})^2$

L代表Loss,表示损失函数,损失函数越小,那么上面最大似然就越大~

有的书本上公式,也可以这样写,用$J(\theta)$表示一个意思,$\theta$的角色就是W:

        $J(\theta) = \frac{1}{2}\sum\limits_{i = 1}^n(y^{(i)} - \theta^Tx^{(i)})^2$

                 $ = \frac{1}{2}\sum\limits_{i = 1}^n(\theta^Tx^{(i)} - y^{(i)})^2$

进一步推导

        $J(\theta) = \frac{1}{2}\sum\limits_{i = 1}^n(h_{\theta}(x^{(i)}) - y^{(i)})^2$

其中:

  $\hat{y} = h_{\theta}(X) =X \theta$ 表示全部数据,是矩阵,X表示多个数据,进行矩阵乘法时,放在前面;

  $\hat{y}i = h{\theta}(x^{(i)}) = \theta^Tx^{(i)}$ 表示第i个数据,是向量,所以进行乘法时,其中一方需要转置。

因为最大似然公式中有个负号,所以最大总似然变成了最小化负号后面的部分。 到这里,我们就已经推导出来了 MSE 损失函数 $J(\theta)$,从公式我们也可以看出来 MSE 名字的来 历,mean squared error,上式也叫做 最小二乘法

        这种最小二乘法估计,其实我们就可以认为,假定了误差服从正太分布,认为样本误差的出现是随机的,独立的,使用最大似然估计思想,利用损失函数最小化 MSE 就能求出最优解!所以反过来说,如果我们的数据误差不是互相独立的,或者不是随机出现的,那么就不适合去假设为正太分布,就不能去用正太分布的概率密度函数带入到总似然的函数中,故而就不能用 MSE 作为损失函数去求解最优解了!所以最小二乘法不是万能的~
        还有譬如假设误差服从泊松分布,或其他分布那就得用其他分布的概率密度函数去推导出损失函数了。
        所以有时我们也可以把线性回归看成是广义线性回归。比如,逻辑回归,泊松回归都属于广义线性回归的一种,这里我们线性回归可以说是最小二乘线性回归。

这篇关于关于线性模型的底层逻辑解读 (机器学习 细读01)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/315217

相关文章

Java序列化之serialVersionUID的用法解读

《Java序列化之serialVersionUID的用法解读》Java序列化之serialVersionUID:本文介绍了Java对象的序列化和反序列化过程,强调了serialVersionUID的作... 目录JavChina编程a序列化之serialVersionUID什么是序列化为什么要序列化serialV

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

MySQL数据库读写分离与负载均衡的实现逻辑

《MySQL数据库读写分离与负载均衡的实现逻辑》读写分离与负载均衡是数据库优化的关键策略,读写分离的核心是将数据库的读操作与写操作分离,本文给大家介绍MySQL数据库读写分离与负载均衡的实现方式,感兴... 目录读写分离与负载均衡的核心概念与目的读写分离的必要性与实现逻辑读写分离的实现方式及优缺点读负载均衡

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

MySQL之搜索引擎使用解读

《MySQL之搜索引擎使用解读》MySQL存储引擎是数据存储和管理的核心组件,不同引擎(如InnoDB、MyISAM)采用不同机制,InnoDB支持事务与行锁,适合高并发场景;MyISAM不支持事务,... 目录mysql的存储引擎是什么MySQL存储引擎的功能MySQL的存储引擎的分类查看存储引擎1.命令

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4