一体化模型图像去雨+图像去噪+图像去模糊(图像处理-图像复原-代码+部署运行教程)

本文主要是介绍一体化模型图像去雨+图像去噪+图像去模糊(图像处理-图像复原-代码+部署运行教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要讲述了一体化模型进行去噪、去雨、去模糊,也就是说,一个模型就可以完成上述三个任务。实现了良好的图像复原功能!

先来看一下美女复原.jpg
在这里插入图片描述
在这里插入图片描述

具体的

  • 在图像恢复任务中,需要在恢复图像的过程中保持空间细节和高级上下文信息之间的复杂平衡。
  • 在这篇论文中,我们提出了一种新颖的协同设计,可以在这些竞争目标之间实现最佳平衡。我们的主要提议是一个多阶段架构,逐步学习对退化输入进行恢复的函数,从而将整个恢复过程分解为更可管理的步骤。
  • 具体而言,我们的模型首先使用编码器-解码器架构学习上下文特征,然后与保留局部信息的高分辨率分支相结合。
  • 在每个阶段,我们引入一种新颖的逐像素自适应设计,利用原位监督注意力来重新加权局部特征。这种多阶段架构的一个关键组成部分是不同阶段之间的信息交流。
  • 为此,我们提出了一种双重方法,在信息不仅从早期到晚期阶段顺序交换的同时,还存在特征处理块之间的侧向连接,以避免任何信息损失。
  • 结果紧密关联的多阶段架构,在包括图像去雨、去模糊和去噪等多个任务的十个数据集上实现了强大的性能提升。

去噪结果

该论文提出的方法在图像恢复任务中引入了一个多阶段架构,可以有效平衡空间细节和上下文信息。其核心思想是逐步学习破损输入的恢复函数,并通过多个阶段的信息交流来实现更好的恢复效果。

在这里插入图片描述

去模糊结果

具体而言,该方法使用编码器-解码器架构学习上下文特征,并将其与保留局部信息的高分辨率分支相结合。

在这里插入图片描述

去雨对比结果

在每个阶段,它还引入了一种新颖的自适应设计,通过利用原位监督注意力对局部特征进行重新加权。此外,该方法还使用了早期到晚期阶段的顺序信息交流和侧向连接来避免信息损失。

在这里插入图片描述

代码部署

在这里插入图片描述

要部署和运行该论文的代码,您可以按照以下步骤进行:

  1. 获取代码:首先,您需要从论文作者的代码存储库或其他公开来源获取代码。

    git clone my_code 联系我----->qq1309399183
    
  2. 环境设置:确保您的计算机上已安装所需的软件和库。根据代码要求,您可能需要安装Python、PyTorch、NumPy等。

    conda create -n pytorch1 python=3.7
    conda activate pytorch1
    conda install pytorch=1.1 torchvision=0.3 cudatoolkit=9.0 -c pytorch
    pip install matplotlib scikit-image opencv-python yacs joblib natsort h5py tqdm
    
    cd pytorch-gradual-warmup-lr; python setup.py install; cd ..
    
  3. 数据准备:准备用于图像恢复任务的数据集。根据您的需求,您可以选择合适的数据集,并确保按照代码的要求组织数据。

    点击代码中的链接获取!

  4. 模型训练:使用提供的代码,您可以使用准备好的数据集对模型进行训练。根据代码的具体实现,您可能需要指定模型架构、训练参数和优化器等。

    python train.py
    

    在这里插入图片描述

  5. 模型测试:在训练完成后,您可以使用训练得到的模型对新的图像进行恢复。根据代码的实现,您可能需要提供待恢复图像的路径或其他必要的输入

    python demo.py --task Task_Name --input_dir path_to_images --result_dir save_images_here
    touch me:qq---->1309399183
    

这篇关于一体化模型图像去雨+图像去噪+图像去模糊(图像处理-图像复原-代码+部署运行教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/312264

相关文章

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

MySQL Workbench 安装教程(保姆级)

《MySQLWorkbench安装教程(保姆级)》MySQLWorkbench是一款强大的数据库设计和管理工具,本文主要介绍了MySQLWorkbench安装教程,文中通过图文介绍的非常详细,对大... 目录前言:详细步骤:一、检查安装的数据库版本二、在官网下载对应的mysql Workbench版本,要是