26万条抖音数据背后的推荐逻辑|为什么小哥哥更受欢迎

2023-10-31 01:10

本文主要是介绍26万条抖音数据背后的推荐逻辑|为什么小哥哥更受欢迎,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=gif


640?wx_fmt=jpeg


这次是26W条数据,应该可以说明更多问题。


和往常一样,先给出分析结论,希望你能引起你的兴趣:

  1. 首次推荐分水岭应该在5000人,点赞不过百基本凉了;

  2. 抖音红利似乎在消失,用户越来越不喜欢点赞了;

  3. 15s不一定是最好的,可以试试10s;

  4. 男女比例严重失调,小哥哥的视频更受喜爱;

  5. “生活化”是抖音内容的主体,年轻人乐于表达爱和喜欢;

  6. 90后是抖音的主力军,94年小哥哥小姐姐最多;

  7. 一些小技巧,比如把抖音视频分享到微信和朋友圈;

  8. 一个很棒的广告


下面是正文


丨数据介绍

数据区间是2018年2月1日—5月10日,历时两个月,累计260968条。采集过程中,对作者做了去重处理,也就是说每个作者只取了TA的一条视频数据。这也代表着我们拥有26W个作者的数据。

数据包含视频描述、发布时间、播放数、点赞数、评论数、转发数、尺寸、清晰度、时长、是否包含商品广告、是否包含水印,以及视频作者的昵称、性别、生日、账号创建时间、是否认证、认证类型等数据。

另外,数据均为前端可见数据,未使用任何违规操作。


丨首次推荐分水岭是5000,请把赞“刷”到100+

做过今日头条自媒体账号的人应该了解,头条的推荐算法是先把文章做小范围推荐,查看文章在该部分人中的阅读数据,如果阅读数据良好,则会扩大文章的推荐范围。数据越好,推荐范围则越大。

既然抖音是头条系产品,那肯定采用了同样的推荐逻辑。从用户的方便程度来看,点赞>评论>转发,那么点赞作为推荐算法的指标权重应该会大于其他两个。从头条的推荐算法推测,视频应该会先被推荐给一部分用户,如果点赞数达到某个水平,则会将视频推荐给更多的人;如果没有,那么视频大概率会凉了。

经过不断分段统计视频各播放量与点赞之间的关系,得到了下面这张表格:

640?wx_fmt=png

由于采集机制的原因,我们很难采集到没有被推荐的视频,但就现有的1907条播放量在5000以下的视频我们可以清晰地看到,这些视频的点赞量100以下的占到了94%。那么反过来可以推断,想要你的视频被更多的人看到(也就是进入系统推荐的二阶段),那么你视频的点赞量至少应该增加到100以上。

我做了几个视频进行了测试,发布后分享出去让好友帮忙点赞(下文会给出方法),那些在1小时内点赞量突破一百的,播放量在几小时内很快破万;而那些点赞量低的,则不再被人问津。

640?wx_fmt=jpeg


即便这个结果在测试中得到了验证,但是我却不能给出实锤结论。

首先,目前采集到的低于5000播放量的数据,大都在5月以后发布,传播时间不够长,或许这恰好是点赞量低的原因;其次,与整体的样本量相比,这部分数据只占不到1%,没有达到统计分析的样本数要求。

无论如何,视频的点赞量肯定会作为推荐权重的依据,点赞越高自然是越好的。


丨看似红红火火,但瓶颈似乎已经到来

作者数据包含了账号的注册时间,我把作者的注册时间按照月份统计,发现抖音用户的增长似乎在放缓:

640?wx_fmt=png

从上面的用户注册时间分布来看,抖音用户在2018年1月份达到顶峰,随后开始逐月递减,4月份已经只有3月份的一半!

实际上,这个数据仍然存在一些漏洞。毕竟存在一种可能,就是新注册的用户不喜欢发布视频,而是在注册一段时间后才开始发布。或者,新注册用户的视频因为还未得到系统的推荐,被我们采集到的概率也随之降低。

如果账号的创建时间不能说明问题,我们来看另一组数据。

把视频的发布时间与其相对应的播放量和点赞量结合,我得到了各月发布视频的平均点赞量。为了去除数据传播时长的影响,我去掉了5月以后发布的视频,得到各月平均点赞量分布图:

640?wx_fmt=png

数据显示,各月视频的平均点赞数在逐月降低,4月份食品平均点赞量甚至不足3月份的一半。或许是因为视频越来越堵,用户已经麻木,但无论如何,早期的红利在逐渐降低,想上车的要赶紧了。


丨拍满15s不是最好的,10s更受用户欢迎

目前抖音未公布获得视频超过15s时长权限的机制,但至少我们知道“优质”是选拔的重要条件,所以在分析视频时长时,我去掉了时长超过15s的视频。对15s以内视频的平均点赞情况作了分析,得到以下分布图:

640?wx_fmt=png

数据并不支持我们把视频拍满15s,10s是最好的,13s也不错,甚至11s都优于15s。

由于超过15s的视频数量仅6866条,在样本中占比太少,我就不再给出分析。在相同数量级下(均少于100条),39s、42s、50s和58s看上去效果不错。


丨男女比例严重失调,小哥哥的视频更受欢迎

统计26W个作者的性别,我发现抖音用户中女性用户数量接近男性的3倍!显然是严重失调。

640?wx_fmt=png

(注:“无”代表用户没有填写性别信息)

从用户组成来看,就很容易理解为什么抖音的带货能力这么强了。从购物能力来看,女性购买力更强,毕竟大部分钱都掌握在女性的手里。

把作者性别和其发布视频的平均点赞量结合,我神奇的发现,小哥哥们的视频竟然更受欢迎!

640?wx_fmt=png

难不成是因为女性用户多于男性,异性相吸?

注:没有性别信息的用户有多个视频点赞量超过百万(比如用户@安德罗妮、的一个视频点赞量达到600W),造成了该类别用户的平均点赞量过高,不排除这部分用户均为女性的可能性。


丨生活化的内容是抖音的主流,年轻人愿意表达爱与喜欢

使用新浪微舆情(wyq.sina.com)的文本分析功能,把视频的描述文字做了词性和情感方面的分析,发现生活化的内容是抖音的主体。

640?wx_fmt=png

对视频描述文本的词性分析,动词方面除了“喜欢”和“爱”以外,生活化的“想”、“拍”、“吃”是出现频率最高的词;形容词方面“快乐”、“开心”、“好看”和“可爱”是抖音用户最喜欢表达的感情;名词上“小哥哥”和“小姐姐”显然已经成为发抖音的固定搭配。

640?wx_fmt=png

整体词频方面,除了“小哥哥”、“小姐姐”以及“抖音小助手”以外,具备强烈生活色彩的“爸爸”、“我妈”、“弟弟”、“老公”、“我家”这些词同样被高频率使用。


丨抖音是90后的天下,94年是主力军

对作者的出生年龄进行统计,排除掉建国以前出生和至今未出生的用户,得到如下年龄人数分布图像:

640?wx_fmt=png

(点击图片放大查看)

图像已经很清楚的告诉我们,抖音的已经是90后的天下,94年是这其中的核心。不过算算也对,94年出生的人现在已经24岁了(我还以为14),正是最青春、最喜欢新鲜事物的年华。

所以,主打年轻人的品牌可以入驻或者把广告投放搞起来了。


丨福利:一些抖音小技巧

1.把视频分享到微信,不被屏蔽甚至可以直接跳转到抖音

由于“互联网短视频整治期间,平台将统一暂停直接播放”,我们分享到抖音的视频会变成一长串链接,这大大降低了我们视频的曝光度。但这些阻挡不了聪明的互联网人(也就是我了)致力于传播的热情,我使用一些黑科技手段为大家开发了一个小工具,可以帮助你们把抖音视频分享到微信,点击后直接跳转到抖音APP播放,像下图这样:

640?wx_fmt=gif

生成链接打开后的应用宝页面也是可以分享出去的,点击后同样可以直达你的抖音视频。这是一个工具箱,具体制作方法我就不透露了,长按识别下面的二维码即可享用。

如果链接被封了可以加我好友获取


2.精细化运营,一些小细节很重要

我们来看下面两个视频截图,你发现什么差别了么?

640?wx_fmt=png  640?wx_fmt=png

如果两个视频都需要视频描述来完善视频的内容,那么后一个视频的效果会更好,因为相比于白色视频背景,纯黑色可以非常清晰的把底部的视频描述凸显出来。

除此以外,视频内容和质量相似的情况下,竖向的视频比横向的视频更容易被点赞,不信你横过手机点赞一下试试……

3.能不能绕过机器筛选直接被推荐到更大的流量池?

随着监管制度的完善,纯机器算法筛选和推荐已经不能满足用户对高质量内容的需求,于是今日头条引入了大量人工审核团队。这些人工除了审核内容是否违规外,还承担发现优质内容、使其提前进入推荐队列的职责(我猜的)。如果我猜对了,那么,如果视频能跨过机器的迭代推荐,直达人工,岂不是会更快速的火起来?

我有一个冒风险的办法,并且测试成功了一次(只测试了一次,200粉丝半小时飙升到1W2播放量),你们如果胆大也可以试一试:在视频描述里加入一些机器识别不准确的敏感词,像这样:

640?wx_fmt=png




如果大家周围有对数据分析&数据挖掘感兴趣的朋友,欢迎在朋友圈分享&转发一下,让更多的朋友加入我们。有好的文章也可以联系我与大家分享,需要获取代码转载本公众号文章,可以直接在公众号或者文章下方留言

往期文章:







这篇关于26万条抖音数据背后的推荐逻辑|为什么小哥哥更受欢迎的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/311784

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X