envi5.3处理高分二号影像数据辐射定标大气校正

2023-10-30 22:46

本文主要是介绍envi5.3处理高分二号影像数据辐射定标大气校正,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、多光谱影像处理

1. 辐射定标

 2.大气校正

1. 需要准备一些数据:

2.大气校正过程

3、正射校正

二、全色影像处理

1. 辐射定标

 2. 正射校正

三、图像融合

1.几何配准

2.图像融合


高分二号处理流程 


envi5.3的安装教程:

ENVI5.3安装

        安装完ENVI5.3后,还需要安装envi app store,然后在app store中安装“中国国产卫星支持工具”,这样才能在envi里导入国产卫星图像。

保姆级教程:

ENVI插件商店App Store的下载、安装、使用方法


全文根据此篇文章进行数据处理:

tm影像辐射定标_高分二号影像数据预处理及裁剪过程

本文中的操作与表述大部分来自于上述文章,处理过程作为上述文章的补充。


其他参考:

学习笔记---遥感影像辐射定标与大气校正

利用ENVI自带全球DEM数据计算区域平均高程

高分二号数据处理流程(有高分二号的数据信息)


打开.tif文件的方法(本文打开的都是.xml文件)

启动ENVI5.3,在菜单栏中,选择File > Open,弹出Open对话框,找到GF2数据⽂件夹所在位置,选中扩展名为.tiff的两个⽂件,点击打开。



GF2有多光谱和全色两个数据,MSS是多光谱的,PAN是全色的,多光谱的分辨率低(4m),全色的高(1m),需要把这两个数据融合,融合之前需要做定标等处理,获取经纬度。


一、多光谱影像处理

1. 辐射定标

以这个为例:

其他路径\2022.4.22\BaoTaQu\BaoTaQu_2022_DiZai\GF2_PMS1_E109.6_N36.2_20220214_L1A0006288992\GF2_PMS1_E109.6_N36.2_20220214_L1A0006288992-MSS1.xml

注意:路径中不要有中文,可能会报错(我的就报错了,无法生成.dat)

本文是以MSS1.xml为例,若为MSS2.xml,则和MSS相关的都将1替换成2即可

打开ENVI,使用国产卫星扩展工具打开MSS影像,启动File→Open As→China Satellites→GF2,选择MSS.xml文件打开;

在Toolbox中,Radiometric Correction→Radiometric Calibration,在File Selection中选择待处理影像,点击OK;

 弹出Radiometric Calibration对话框,Calibration type确认为Radiance,单击Apply FLAASH Setting,设置输出路径与文件名(这里需要创建一个output文件夹,用于存放生成的数据文件,output/MSS1_Radiometric.dat),点击OK开始执行;

(1)辐射定标前和辐射标定后的波普廓线

(2)辐射定标前和辐射标定后的直观图像

 2.大气校正

1. 需要准备一些数据:

(1)GF2的Sensor Altitude是631.000

(2)Ground Elevation平均高程需要对具体的图像进行计算。

平均高程计算过程:

File -->  Open World Data -->  Elevation(GMTED2010)(海拔)

得到 .jp2 图像

把要计算的.tif文件放在.jp2文件上面

可以看到tif图像在jp2图像的上方,如下图所示

选择ROI区域工具,画点(此区域用四个点即可)圈出tif图像区域。

 点击右键,选择第一个选项“完成和接受多边形”

 创建好区域,计算高程

得到1241m,则Ground Elevation=1241/1000=1.241km

也可以根据百度中查到的,海拔高度860.6~1525米,平均1193米,也可以按这个来,最好是计算。

注:计算完成后,可以将 .jp2图像remove掉,不然在导入生成好的大气校正图像时会提示 “···one or more····”这样的提示,不得不创建一个新的view。


2.大气校正过程

在Toolbox中,双击Radiometric Correction→Atmospheric Correction Module→FLAASH Atmospheric Correction工具启动FLAASH模块;

 参数解释

 (1) 设置输入与输出文件信息:

Input Radiance Image:输入辐射定标之后的数据,MSS1_Radiometric.dat;

Output Reflectance File:单击按钮选择反射率数据输出目录与文件名(output/MSS1_FLAASH.dat)如果只在后面的文本框中输入文件名,则保存路径将为Output Directory for FLAASH Files中的路径;

 Output Directory for FLAASH Files:设置大气校正其他结果输出路径 output文件夹;

Rootname for FLAASH Files:设置大气校正其他输出结果的根文件名(这个我没设置)
 

(2) 设置传感器及图像信息:

ENVI5.3及以上版本能够对图像中心坐标和获取时间信息进行自动识别,所以只需要修改以下几点:

Sensor Type:传感器类型,这里选择Multispectral→UNKNOWN→MSI;

GF2的Sensor Altitude是631.000

Ground Elevation:成像区域平均高度,通过数据准备中,计算得到的Ground Elevation=1.241km

Pixel Size:4m;

(3) 大气模型和气溶胶模型:

Atmosphere model(大气模型)

根据数据经纬度与获取时间对应的大气模型进行选择:

本文实验的数据纬度为36°,日期为Feb(2月),故选取的是MLS(Mid-Latitude Summer),其他图像按照这个方法选择即可模型即可。

Aerosol Model

根据实际图像选择,本文例子为Rural

Aerosol Retrieval 气溶胶反演

第一种,选择 none。(本文选用的这种)

点击Multispectral Settings,在里面设置响应函数

 Filter Function File 是GF2-PMS1的光谱响应函数gf2_pms1_mss.sli(GF2-PMS2选择gf2_pms2_mss.sli);位于ENVI安装目录:*安装目录\ENVI53\resource\filterfuncs下,选择即可。

点击Fiiter Function File -->   Open --> New file

第二种,选择,需要设置Multispectral Settings--Kaufman --> Tanre Aerosol Retrieval

Advanced Settings

这里大部分都可以保持默认设置,但由于是多光谱数据,故将Modtran Resolution设置为15cm-1.

我的参数设置: 

 所有设置完成之后,点击Apply执行大气校正,完成后会得到反演的能见度和水汽柱含量;

 得到的结果:

 选择Display>Profiles>Spectral查看大气校正前后同一地物波谱曲线变化。

气溶胶反演选择的第一种,None,得到的 大气校正前后对比图,图片颜色有些许变化。

 这个是刚刚大气校正后得到的:

   

3、正射校正

点击File→Open打开大气校正后(或者原始的多光谱)的影像,View Metadata查看其元数据信息,可以看到ENVI很好地识别了数据的RPC信息;

  有了RPC信息之后,就可以基于这些RPC信息进行正射校正;点击Toolbox→Geometric Correction→Orthorectification→RPC Orthorectification
Workflow,打开正射校正流程化工具;

 在File Selection面板中,Input File选择经过大气校正的多光谱数据(MSS1_FLAASH.dat),DEM File会默认选择全球分辨率为900米的DEM数据,我们这里保持默认(如果有更高分辨率的DEM数据,可以替换此数据),点击Next;

在RPC Refinement面板中,有四个选项卡可以选择。

如果有实测的或从其他途径获取的控制点数据,可以在该面板中进行添加,添加后在Statistics选项卡中可以看到相应的误差统计信息;

1) 切换到Advanced选项卡,修改输出像元大小Output Pixel Size为4米,重采样方法Image Resampling选择三次卷积法,其他参数保持默认;
 

 2) 切换到Export选项卡,选择输出文件格式,设置输出路径及文件名(MSS1_FLAASH_rpcortho.dat),点击Finish;

 

正射校正前后对比:


二、全色影像处理

1. 辐射定标

打开ENVI,使用国产卫星扩展工具打开MSS影像,启动File→Open As→China Satellites→GF2,选择PAN.xml文件打开;

在Toolbox中,Radiometric Correction→Radiometric Calibration,在File Selection中选择待处理影像,点击OK;

Calibration Type: Reflectance,全色影像定标为大气表观反射率;

Output Interleave: BIL;

Output Data Type:Uint;

Scale Factor:10000;

output/PAN1_Radiometric.dat

 注:由于多光谱FLAASH大气校正的结果为扩大了10000倍的反射率数据,为了让融合图像效果好,需要将全色数据与多光谱数据的像元值变成一致。这里使用辐射定标工具将全色数据定标为大气表观反射率,并扩大10000倍。

辐射定标前和辐射标定后的直观图像

 2. 正射校正

全色数据的正射校正操作与多光谱数据的正射校正完全相同,需要提醒的地方是GF2全色数据正射校正时输出像元大小需设置为1米,以便我们下面进行图像融合。

 点击Toolbox→Geometric Correction→Orthorectification→RPC Orthorectification
Workflow,打开正射校正流程化工具;

 在File Selection面板中,Input File选择经过辐射定标(因为本文的全色图没有进行大气校正)的全色数据(PAN1_Radiometric.dat),DEM File会默认选择全球分辨率为900米的DEM数据,我们这里保持默认(如果有更高分辨率的DEM数据,可以替换此数据),点击Next;

1) 切换到Advanced选项卡,修改输出像元大小Output Pixel Size为1米,重采样方法Image Resampling选择三次卷积法(Cubic Convolution),其他参数保持默认;

 2) 切换到Export选项卡,选择输出文件格式,设置输出路径及文件名(PAN1_Radiometric_rpcortho.dat),点击Finish;

 

正射校正前、后对比:

 以上全色图的处理已完成。

三、图像融合

1.几何配准

(本次处理中没有进行几何配准,这部分没有处理)

        图像融合之前,需要查看二者是否完全配准,如果没有完全配准,就需要对其进行配准,可以使用ENVI中的自动配准流程化工具,以全色数据为基准对多光谱数据进行配准;此工具的位置在:Toolbox > Geometric Correction > Registration > Image Registration Workflow

        本次操作正射校正后的多光谱和全色数据配准的比较好(目前,大部分高分辨率数据正射校正后多光谱和全色数据配准的均比较好),所以我们这里不进行图像配准,直接进行图像融合;

2.图像融合

(1)NNDiffuse Pan Sharpening方法

点击在Toolbox→Extensions→NNDiffuse Pan Sharpening ;

Input Low Resolution Raster选择上一步正射校正后的多光谱数据;

Input High Resolution Raster选择上一步正射校正后的全色数据;

Output Raster:NNDiffusePanSharpening.dat应该是自己出来的,如需修改位置、名称可以进行修改,也可以将融合的数据改为.tiff格式的,NNDiffusePanSharpening.tiff;

其他参数保持默认;

点击OK运行;

注:NNDiffuse Pan Sharpening工具要求输入的多光谱和全色数据的空间分辨率是整数倍的(本例正射校正时分别将多光谱的全色的分辨率重采样为4米和1米,就是为了方便该工具的使用)。

浏览融合之后的影像与融合之前的多光谱影像,空间分辨率得到明显提升,颜色纹理也得到了比较好的保留。与全色融合后的光谱曲线整体升高。

 

 

对于图像变白问题,可以将背景值设置为0,有两种方式

(1)使用ENVI自带的工具

具体操作:

Toolbox > Extensions > Raster Processing Batch Tool > Data Ignore Value > Set Ignore Value[Zero]

 (2)手动修改源数据

        使用记事本等工具打开图像头文件,如下图所示。

        在头文件中手动增加一行为data ignore value = 0(其中0为背景值,可以设置为其他值)。重新打开图像即可。

最终得到的图像保存:

此处保存的文件格式是.dat,可根据自己所需,保存成.tif或者其他格式都可以


处理过程中涉及到的文件名:

MSS1_Radiometric.dat
MSS1_FLAASH.dat
MSS1_FLAASH_rpcortho.dat
PAN1_Radiometric.dat
PAN1_Radiometric_rpcortho.dat

MSS2_Radiometric.dat
MSS2_FLAASH.dat
MSS2_FLAASH_rpcortho.dat
PAN2_Radiometric.dat
PAN2_Radiometric_rpcortho.dat

NNDiffusePanSharpening.tiff

这篇关于envi5.3处理高分二号影像数据辐射定标大气校正的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/311067

相关文章

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

Python字符串处理方法超全攻略

《Python字符串处理方法超全攻略》字符串可以看作多个字符的按照先后顺序组合,相当于就是序列结构,意味着可以对它进行遍历、切片,:本文主要介绍Python字符串处理方法的相关资料,文中通过代码介... 目录一、基础知识:字符串的“不可变”特性与创建方式二、常用操作:80%场景的“万能工具箱”三、格式化方法

Spring Boot 处理带文件表单的方式汇总

《SpringBoot处理带文件表单的方式汇总》本文详细介绍了六种处理文件上传的方式,包括@RequestParam、@RequestPart、@ModelAttribute、@ModelAttr... 目录方式 1:@RequestParam接收文件后端代码前端代码特点方式 2:@RequestPart接

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra