ECCV 2022 | 腾讯优图提出DisCo:拯救小模型在自监督学习中的效果

2023-10-30 15:10

本文主要是介绍ECCV 2022 | 腾讯优图提出DisCo:拯救小模型在自监督学习中的效果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

作者:Linz |  已授权转载(源:知乎)

https://zhuanlan.zhihu.com/p/366819594

403dc54c2dfab3200fdc041e8dd7a202.jpeg

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

论文:https://arxiv.org/abs/2104.09124代码(已开源):https://github.com/Yuting-Gao/DisCo-pytorch

Motivation

自监督学习通常指的模型在大规模无标注数据上学习通用的表征,迁移到下游相关任务。因为学习到的通用表征能显著提升下游任务的性能,自监督学习被广泛用于各种场景。通常来讲,模型容量越大,自监督学习的效果越好 [1,2]。反之,轻量化的模型(EfficientNet-B0, MobileNet-V3, EfficientNet-B1) 在自监督学习上效果就远不如容量相对大的模型 (ResNet50/101/152/50*2)。

目前提升轻量化模型在自监督学习上性能的做法主要是通过蒸馏的方式,将容量更大的模型的知识迁移给学生模型。SEED [2]基于MoCo-V2框架 [3,4],容量大的模型作为Teacher,轻量化模型作为Student,共享MoCo-V2框架中负样本空间(Queue),通过交叉熵迫使正样本与相同的负样本在Student与Teacher空间中的分布尽可能相同。CompRess [1]还尝试了Teacher和Student维护各自的负样本空间,同时使用KL散度来拉近分布。以上方法可以有效的将Teacher的知识迁移给Student,从而提升轻量化模型Student的效果(本文会交替使用Student与轻量化模型)。

本文提出了 Distilled Contrastive Learning (DisCo),一种简单有效的基于蒸馏的轻量化模型的自监督学习方法,该方法可以显著提升Student的效果并且部分轻量化模型可以非常接近Teacher的性能。该方法有以下几个观察:

  1. 基于自监督的蒸馏学习,因为最后一层的表征包含了不同样本的在整个表征空间中的全局的绝对位置和局部的相对位置信息,而Teacher中的这类信息比Student更加的好,所以直接拉近Teacher与Student最后一层的表征可能是效果最好。

  2. 在CompRess [1] 中,Teacher 与 Student 模型共享负样本队列(1q) 与拥有各自负样本队列(2q) 差距在1%内。该方法迁移到下游任务数据集CUB200, Car192,该方法拥有各自的负样本队列甚至可以显著超过共享负样本队列。这说明,Student并没有从Teacher共享的负样本空间学习中获得足够有效的知识。Student不需要依赖来自Teacher的负样本空间。

  3. 放弃共享队列的好处之一,是整个框架不依赖于MoCo-V2,整个框架更加简洁。Teacher/Student 模型可以与其他比MoCo-V2更加有效的自监督/无监督表征学习方法结合,进一步提升轻量化模型蒸馏完的最终性能。

  4. 目前的自监督方法中,MLP的隐藏层维度较低可能是蒸馏性能的瓶颈。在自监督学习与蒸馏阶段增加这个结构的隐藏层的维度可以进一步提升蒸馏之后最终轻量化模型的效果,而部署阶段不会有任何额外的开销。将隐藏层维度从512->2048,ResNet-18可以显著提升3.5%。

Method

本文提出一个简单却很有效的框架 Distilled Contrastive Learning (DisCo) 。Student 会同时进行自监督学习和学习相同的样本在Teacher的表征空间中分布。

1bb2149ffba113252a0e6b882a6c24f7.jpeg
DisCo的框架

如上图所示,通过数据增广 (Data Augmentation) 操作将图像生成为两个视图 (View)。除了自监督学习,还引入一个自监督学习获得的Teacher模型。要求相同样本的相同视图,经过Student和固定参数的Teacehr的最终表征保持一致。在本文的主要实验中,自监督学习基于MoCo-V2 (Contrastive Learning),而保持相同样本通过Teacher与Student的输出表征的表征相似是通过一致性正则化(Consistency Regularization)。本文采用均方误差来使Student学习到样本在对应Teacher空间中的分布。

Experiments

此处我们列出一些重要的实验结果。

5cf641f677ee2eaec88c2ed97bee8ec9.jpeg
在ImageNet验证集,对不同轻量化模型进行线性评估 (Linear Evaluation)

在上图,DisCo 大大超出了轻量化模型(EfficientNet-B0, MobileNet-V3, Efficient-B1, ResNet18, ResNet34)直接使用MoCo-V2的自监督学习得到的效果,并且超越了SOTA(SEED)。特别值得注意的是,EfficientNet-B0的结果非常接近作为Teacher的ResNet-50,而EfficientNet-B0的参数仅为ResNet-50的16.3%。

除了与SOTA对比,我们还从以下几个方面的实验来验证DisCo的有效性:

  1. 表征泛化能力

    1. 迁移到下游分类任务:Cifar10/100

    2. 迁移到检测/分割任务:VOC07,COCO2012

  2. DisCo相比已有蒸馏方法,能更好的拉近Teacher与Student的表征分布。同时,与已有的蒸馏方法结合,能进一步提升蒸馏效果

  3. 半监督学习下的表现

  4. 消融实验

    1. Teacher采用其他的自监督学习方法的影响

    2. Student/Teacher同时采用其他的自监督学习方法的影响

除此之外,本文还从分析了MLP隐藏层维度的影响,使用IB理论进一步分析隐藏层的维度可以有效提升方法轻量化模型性能的原因。详情可见论文链接。

Visualization

本文还可视化了相同样本在 经过MoCo-2得到的EfficientNet-B0, 经过MoCo-V2得到的ResNet-50,以及本文的方法得到的EfficientNet-B0的表征。可以观察到ResNet-50形成比EfficientNet-B0更多的分离簇,单独使用MoCo-V2,本文的方法得到的EfficientNet-B0有更清晰的分离簇,也与ResNet-50更接近。

389d799da3c6719c1d4ede56a43cfe78.jpeg
在ImageNet测试集上聚类结果(不同的颜色代表不同的类别)

Conclusion

针对怎么缓解轻量化的模型在自监督任务上性能远不如容量大的模型的现象,本文通过知自监督学习和知识蒸馏,约束轻量级模型Student的输出表征与容量大的模型Teacher的输出表征在空间上尽量相近。该方法可以不依赖特定的自监督方法。特别是,当ResNet101 / ResNet-50被用作教师,EfficientNet-B0在ImageNet上的 Linear Evaluation 结果非常接近ResNet-101 / ResNet-50,但EfficientNet-B0的参数量仅为ResNet101 / ResNet-50的9.4%/ 16.3%。

Reference

  1. Soroush Abbasi Koohpayegani, Ajinkya Tejankar, and Hamed Pirsiavash. Compress: Self-supervised learning by compressing representations. In NeurIPS, pages 12980– 12992, 2020.

  2. Zhiyuan Fang, Jianfeng Wang, Lijuan Wang, Lei Zhang, Yezhou Yang, and Zicheng Liu. Seed: Self-supervised distillation for visual representation. In ICLR, 2021.

  3. Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In CVPR, pages 9729–9738, 2020.

  4. Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive learning. In CVPR, pages 9729–9738, 2020.

  5. Hao Cheng, Dongze Lian, Shenghua Gao, and Yanlin Geng. Evaluating capability of deep neural networks for image classification via information plane. In ECCV, pages 168–182, 2018.

 

点击进入—> CV 微信技术交流群

 
 
 

ICCV和CVPR 2021论文和代码下载

后台回复:CVPR2021,即可下载CVPR 2021论文和代码开源的论文合集

后台回复:ICCV2021,即可下载ICCV 2021论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF

目标检测和Transformer交流群成立
扫描下方二维码,或者添加微信:CVer6666,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群▲扫码或加微信: CVer6666,进交流群
CVer学术交流群(知识星球)来了!想要了解最新最快最好的CV/DL/ML论文速递、优质开源项目、学习教程和实战训练等资料,欢迎扫描下方二维码,加入CVer学术交流群,已汇集数千人!▲扫码进群
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看

这篇关于ECCV 2022 | 腾讯优图提出DisCo:拯救小模型在自监督学习中的效果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/308770

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主

React实现原生APP切换效果

《React实现原生APP切换效果》最近需要使用Hybrid的方式开发一个APP,交互和原生APP相似并且需要IM通信,本文给大家介绍了使用React实现原生APP切换效果,文中通过代码示例讲解的非常... 目录背景需求概览技术栈实现步骤根据 react-router-dom 文档配置好路由添加过渡动画使用

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

使用Python实现生命之轮Wheel of life效果

《使用Python实现生命之轮Wheeloflife效果》生命之轮Wheeloflife这一概念最初由SuccessMotivation®Institute,Inc.的创始人PaulJ.Meyer... 最近看一个生命之轮的视频,让我们珍惜时间,因为一生是有限的。使用python创建生命倒计时图表,珍惜时间

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;