Re-ranking Person Re-identification with k-reciprocal Encoding 重排序算法解析

本文主要是介绍Re-ranking Person Re-identification with k-reciprocal Encoding 重排序算法解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:

Re-ranking Person Re-identification with k-reciprocal Encoding

代码:

https://github.com/layumi/Person_reID_baseline_pytorch/blob/master/re_ranking.py

 

 

3.提出的方法

3.1 问题定义

给定probe person 和gallery set,可以度量它们的马氏距离:

这里是特征向量,M是半正定矩阵。我们可以根据这个距离对p和G排序,距离从小到大排列:

我们的目标是对这个初始排序列表重新排序,使得更多的正样本出现在列表的前段。

 

3.2 K-reciprocal Nearest Neighbors

首先,定义k-nearest neighbors(k-nn),即排序列表的前k个样本:

接着,定义k-reciprocal nearest neighbors(k-rnn),简单地说就是满足“都在对方的k-nn列表里”这一条件的的集合:

 

然而,由于光照、姿态、视角等一系列变化,正样本可能会被排除到k-nn列表外,因此我们定义了一个更鲁棒的k-rnn集合:

上式的意思是,对于原本的集合R(p,k)中的每一个样本q,找到它们的k-rnn集合R(q,k/2),对于重合样本数达到一定条件的,则将其并入R(p,k).通过这种方式,将原本不在R(p,k)集合中的正样本重新带回来。文中给了一个例子来说明这一过程,如下图所示:

 

3.3 Jaccard距离

作者认为,假如两张图片相似,那么它们的k-rnn集合会重叠,即会有重复的样本。重复的样本越多,这两张图片就越相似。那么很自然地就想到用Jaccard Distance度量它们k-rnn集合的相似度:

然而,上面的距离度量有三个缺点:

1.取交集和并集的操作非常耗时间,尤其是在需要计算所有图像对的情况下。一个可选方式是将近邻集编码为一个等价的但是更简单的向量,以减少计算复杂度。

2.这种距离计算方法将所有的近邻样本都认为是同等重要的,而实际上,距离更接近于probe的更可能是正样本。因此,根据原始的距离将大的权值分配给较近的样本这一做法是合理的。

3.单纯考虑上下文信息会在试图测量两个人之间的相似性时造成相当大的障碍。因为,不可避免的变化会使得区分上下文信息变得困难。因此,为了得到鲁棒的距离度量,结合原始距离和Jaccard距离是有必要的。

为了克服上述缺点,我们开始改造Jaccard距离。首先,将k-rnn集合编码为N维的二值向量=,其中每个元素由以下指示函数定义:

接着,为了给每一个元素根据原始距离来重新分配权值,我们采用了高斯核。于是将向量改写为:

 

于是,计算Jaccard距离时用到的交集和并集的基数就改写为:

最后,我们终于得到了改造过的Jaccard距离:

这个改造过程,实际上是将集合比较问题转化为纯粹的向量计算,实践起来更简单。

 

3.4 Local Query Expansion

基于来自同一类的图像可能共享相似特征的想法,我们使用probe的k-nn集合来实现local query expansion,

特别要说明的是,这个query expansion被同时用到了probe 和galleries 上。(这里我的理解是对每个向量定义为其k-nn集合向量的平均,通过这种方法来提升性能。根据我的测试,去掉这一步仍然有不错的效果,但mAP会有少许的下降。)因为k-nn集合可能会混有噪声,因此我们将k值设置得比较小。为了与前面的k做区分,我们定义前面用到的为,而这里用到的为,k1>k2.

 

3.5 最终距离

在这里有参数,最终计算距离如下:

 

3.6 复杂度分析

参考原文内容。

 

整个重排序的流程图如下所示:

 

 

 

这篇关于Re-ranking Person Re-identification with k-reciprocal Encoding 重排序算法解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/306149

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实