Re-ranking Person Re-identification with k-reciprocal Encoding 重排序算法解析

本文主要是介绍Re-ranking Person Re-identification with k-reciprocal Encoding 重排序算法解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:

Re-ranking Person Re-identification with k-reciprocal Encoding

代码:

https://github.com/layumi/Person_reID_baseline_pytorch/blob/master/re_ranking.py

 

 

3.提出的方法

3.1 问题定义

给定probe person 和gallery set,可以度量它们的马氏距离:

这里是特征向量,M是半正定矩阵。我们可以根据这个距离对p和G排序,距离从小到大排列:

我们的目标是对这个初始排序列表重新排序,使得更多的正样本出现在列表的前段。

 

3.2 K-reciprocal Nearest Neighbors

首先,定义k-nearest neighbors(k-nn),即排序列表的前k个样本:

接着,定义k-reciprocal nearest neighbors(k-rnn),简单地说就是满足“都在对方的k-nn列表里”这一条件的的集合:

 

然而,由于光照、姿态、视角等一系列变化,正样本可能会被排除到k-nn列表外,因此我们定义了一个更鲁棒的k-rnn集合:

上式的意思是,对于原本的集合R(p,k)中的每一个样本q,找到它们的k-rnn集合R(q,k/2),对于重合样本数达到一定条件的,则将其并入R(p,k).通过这种方式,将原本不在R(p,k)集合中的正样本重新带回来。文中给了一个例子来说明这一过程,如下图所示:

 

3.3 Jaccard距离

作者认为,假如两张图片相似,那么它们的k-rnn集合会重叠,即会有重复的样本。重复的样本越多,这两张图片就越相似。那么很自然地就想到用Jaccard Distance度量它们k-rnn集合的相似度:

然而,上面的距离度量有三个缺点:

1.取交集和并集的操作非常耗时间,尤其是在需要计算所有图像对的情况下。一个可选方式是将近邻集编码为一个等价的但是更简单的向量,以减少计算复杂度。

2.这种距离计算方法将所有的近邻样本都认为是同等重要的,而实际上,距离更接近于probe的更可能是正样本。因此,根据原始的距离将大的权值分配给较近的样本这一做法是合理的。

3.单纯考虑上下文信息会在试图测量两个人之间的相似性时造成相当大的障碍。因为,不可避免的变化会使得区分上下文信息变得困难。因此,为了得到鲁棒的距离度量,结合原始距离和Jaccard距离是有必要的。

为了克服上述缺点,我们开始改造Jaccard距离。首先,将k-rnn集合编码为N维的二值向量=,其中每个元素由以下指示函数定义:

接着,为了给每一个元素根据原始距离来重新分配权值,我们采用了高斯核。于是将向量改写为:

 

于是,计算Jaccard距离时用到的交集和并集的基数就改写为:

最后,我们终于得到了改造过的Jaccard距离:

这个改造过程,实际上是将集合比较问题转化为纯粹的向量计算,实践起来更简单。

 

3.4 Local Query Expansion

基于来自同一类的图像可能共享相似特征的想法,我们使用probe的k-nn集合来实现local query expansion,

特别要说明的是,这个query expansion被同时用到了probe 和galleries 上。(这里我的理解是对每个向量定义为其k-nn集合向量的平均,通过这种方法来提升性能。根据我的测试,去掉这一步仍然有不错的效果,但mAP会有少许的下降。)因为k-nn集合可能会混有噪声,因此我们将k值设置得比较小。为了与前面的k做区分,我们定义前面用到的为,而这里用到的为,k1>k2.

 

3.5 最终距离

在这里有参数,最终计算距离如下:

 

3.6 复杂度分析

参考原文内容。

 

整个重排序的流程图如下所示:

 

 

 

这篇关于Re-ranking Person Re-identification with k-reciprocal Encoding 重排序算法解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/306149

相关文章

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的