【爬虫+数据分析+数据可视化】python数据分析全流程富豪榜的榜单数据

本文主要是介绍【爬虫+数据分析+数据可视化】python数据分析全流程富豪榜的榜单数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、爬虫
  • 二、数据分析
    • 2.1 导入库
    • 2.2 数据概况
    • 2.3 可视化分析
      • 2.3.1 财富分布
      • 2.3.2 年龄分布
      • 2.3.3 公司总部分布
      • 2.3.4 性别分布
      • 2.3.5 行业分布
      • 2.3.6 组织结构分布
      • 2.3.7 公司名称词云图
  • 三、整体结论
  • 四、同步视频讲解
    • 4.1 上集(爬虫讲解)
    • 4.2 下集(数据分析讲解)

一、爬虫

爬虫部分,不做详细讲解,下面主要介绍可视化代码。

看一下榜单上TOP20的数据吧:

数据一共2916条,19个字段信息,含:

排名、排名变化、全名_中文、全名_英文、年龄、出生地_中文、出生地_英文、性别、公司名称_中文、公司名称_英文、公司总部地_中文、公司总部地_英文、所在行业_中文、所在行业_英文、组织结构、财富值_人民币_亿、财富值变化、 财富值_美元、年份。

数据信息还是很丰富的,希望能够挖掘出一些有价值的结论!

二、数据分析

2.1 导入库

首先,导入用于数据分析的库:

import pandas as pd  # 读取csv文件
import matplotlib.pyplot as plt  # 画图
from wordcloud import WordCloud  # 词云图

增加一个配置项,用于解决matplotlib中文乱码的问题:

# 解决中文显示问题
plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文标签  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题

读取csv数据:

# 读取csv数据
df = pd.read_csv('富豪榜.csv')

2.2 数据概况

查看数据形状:

查看前3名富豪:

查看最后3名富豪:

描述性统计:

从描述性统计,可以得出结论:
从最大值3900亿、最小值20亿、方差242来看,分布很零散,各位富豪掌握的财富差距很大,马太效应明显。

2.3 可视化分析

2.3.1 财富分布

代码:

df_Wealth = df['财富值_人民币_亿']
# 绘图
df_Wealth.plot.hist(figsize=(18, 6), grid=True, title='财富分布-直方图')
# 保存图片
plt.savefig('财富分布-直方图.png')

可视化图:

结论:大部分的富豪的财富集中在20亿~400亿之间,个别顶级富豪的财富在3000亿以上。

2.3.2 年龄分布

代码:

# 剔除未知
df_Age = df[df.年龄 != '未知']
# 数据切割,8个分段
df_Age_cut = pd.cut(df_Age.年龄.astype(float), bins=[20, 30, 40, 50, 60, 70, 80, 90, 100])
# 画柱形图
df_Age_cut.value_counts().plot.bar(figsize=(16, 6), title='年龄分布-柱形图')
# 保存图片
plt.savefig('年龄分布-柱形图.png')

可视化图:

结论:大部分富豪的年龄在50-60岁,其次是60-70和40-50岁。极少数富豪在20-30岁(年轻有为👍)

2.3.3 公司总部分布

代码:

df_ComHeadquarters = df['公司总部地_中文'].value_counts()
# 绘图
df_ComHeadquarters.nlargest(n=30).plot.bar(figsize=(16, 6),  # 图片大小grid=False,  # 显示网格title='公司总部分布TOP30-柱形图'  # 图片标题
)
# 保存图片
plt.savefig('公司总部分布TOP30-柱形图.png')

可视化图:

结论:公司分布城市,大多集中在北上广深等一线城市,另外杭州、香港、苏州也位列前茅。

2.3.4 性别分布

代码:

df_Gender = df['性别'].value_counts()
# 绘图
df_Gender.plot.pie(figsize=(8, 8),  # 图片大小legend=True,  # 显示图例autopct='%1.2f%%',  # 百分比格式title='性别占比分布-饼图',  # 图片标题
)
# 保存图片
plt.savefig('性别占比分布-饼图.png')

可视化图:

结论:男性富豪占据绝大多数,个别女性在列(巾帼不让须眉👍)

2.3.5 行业分布

代码:

df_Industry = df['所在行业_中文'].value_counts()
df_Industry.nlargest(n=20).plot.bar(figsize=(18, 6),  # 图片大小grid=False,  # 显示网格title='行业分布TOP20-柱形图'  # 图片标题
)
# 保存图片
plt.savefig('行业分布TOP20-柱形图.png')

可视化图:

结论:百富榜中占比最多的行业分别是:房地产、医药、投资、化工等。

2.3.6 组织结构分布

代码:

df_Relations = df['组织结构'].value_counts()
# 绘图
df_Relations.plot.pie(figsize=(8, 8),  # 图片大小legend=True,  # 显示图例autopct='%1.2f%%',  # 百分比格式title='组织结构分布-饼图',  # 图片标题
)
# 保存图片
plt.savefig('组织结构分布-饼图.png')

可视化图:

结论:半数以上是未知,企业未对外开放,或榜单没有统计到;家族和夫妇占据前两类。

2.3.7 公司名称词云图

代码:

ComName_list = df['公司名称_中文'].values.tolist()
ComName_str = ' '.join(ComName_list)
stopwords = []  # 停用词
# backgroud_Image = np.array(Image.open('幻灯片2.png'))  # 读取背景图片
wc = WordCloud(scale=3,  # 清晰度background_color="white",  # 背景颜色max_words=1000,#最大字符数width=800,  # 图宽height=500,  # 图高font_path='/System/Library/Fonts/SimHei.ttf',  # 字体文件路径,根据实际情况替换stopwords=stopwords,  # 停用词# 	mask=backgroud_Image,  # 背景图片
)
wc.generate_from_text(ComName_str)  # 生成词云图
wc.to_file('富豪榜_公司名称_词云图.png')  # 保存图片
wc.to_image()  # 显示图片

可视化图:

结论:阿里系公司占据榜首,其次是海天味业等。

三、整体结论

综上所述,针对富豪榜的榜单数据,得出如下结论:

财富分布:大部分的富豪的财富集中在20亿~400亿之间,个别顶级富豪的财富在3000亿以上。
年龄分布:大部分富豪的年龄在50-60岁,其次是60-70和40-50岁。极少数富豪在20-30岁(年轻有为👍)
城市分布:公司分布城市,大多集中在北上广深等一线城市,另外杭州、香港、苏州也位列前茅
性别分布:男性富豪占据绝大多数,个别女性在列(巾帼不让须眉👍)
行业分布:百富榜中占比最多的行业分别是:房地产、医药、投资、化工等
组织结构分布:半数以上是未知,企业未对外开放,或榜单没有统计到;家族和夫妇占据前两类。
公司名称分布:阿里系公司占据榜首,其次是海天味业等。

四、同步视频讲解

4.1 上集(爬虫讲解)

爬虫讲解视频:
【Python爬虫】爬取富豪榜的榜单数据!

4.2 下集(数据分析讲解)

可视化讲解视频:
【Python数据分析】可视化分析富豪榜的榜单数据!


首发公号:【爬虫+数据分析+数据可视化】python数据分析全流程富豪榜的榜单数据

这篇关于【爬虫+数据分析+数据可视化】python数据分析全流程富豪榜的榜单数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/306001

相关文章

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过