基于matlab实现的平面波展开法二维声子晶体能带计算程序

本文主要是介绍基于matlab实现的平面波展开法二维声子晶体能带计算程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Matlab 平面波展开法计算二维声子晶体二维声子晶体带结构计算,材料是铅柱在橡胶基体中周期排列,格子为正方形。采用PWE方法计算

完整程序:

%%%%%%%%%%%%%%%%%%%%%%%%%
clear;clc;tic;epssys=1.0e-6; %设定一个最小量,避免系统截断误差或除零错误
 
%%%%%%%%%%%%%%%%%%%%%%%%%%

%定义实际的正空间格子基矢
%%%%%%%%%%%%%%%%%%%%%%%%%%
a=0.02;
a1=a*[1 0];
a2=a*[0 1];
%%%%%%%%%%%%%%%%%%%%%%%%%%

%定义晶格的参数
%%%%%%%%%%%%%%%%%%%%%%%%%%
rho1=11600;E1=4.08e10;mju1=1.49e10;lambda1=mju1*(E1-2*mju1)/(3*mju1-E1); %散射体的材料参数
rho2=1300;E2=1.175e5;mju2=4e4;lambda2=mju2*(E2-2*mju2)/(3*mju2-E2); %基体的材料参数
Rc=0.006; %散射体截面半径
Ac=pi*(Rc)^2; %散射体截面面积
Au=a^2; %二维格子原胞面积
Pf=Ac/Au; %填充率
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%生成倒格基矢
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
b1=2*pi/a*[1 0];
b2=2*pi/a*[0 1];
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%选定参与运算的倒空间格矢量,即参与运算的平面波数量
%设定一个l,m的取值范围,变化l,m即可得出参与运算的平面波集合
NrSquare=10; %选定倒空间的尺度,即l,m(倒格矢G=l*b1+m*b2)的取值范围。
             %NrSquare确定后,使用Bloch波数目可能为(2*NrSquare+1)^2
G=zeros((2*NrSquare+1)^2,2); %初始化可能使用的倒格矢矩阵
i=1;
for l=-NrSquare:NrSquare
    for m=-NrSquare:NrSquare
        G(i,:)=l*b1+m*b2;
        i=i+1;
    end;
end;
NG=i-1; %实际使用的Bloch波数目
G=G(1:NG,:); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%生成k空间的rho(Gi-Gj),mju(Gi-Gj),lambda(Gi-Gj)值,i,j从1到NG。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rho=zeros(NG,NG);mju=zeros(NG,NG);lambda=zeros(NG,NG);
for i=1:NG
    for j=1:NG
        Gij=norm(G(j,:)-G(i,:));
        if (Gij<epssys)
            rho(i,j)=rho1*Pf+rho2*(1-Pf);
            mju(i,j)=mju1*Pf+mju2*(1-Pf);
            lambda(i,j)=lambda1*Pf+lambda2*(1-Pf);
        else
            rho(i,j)=(rho1-rho2)*2*Pf*besselj(1,Gij*Rc)/(Gij*Rc);
            mju(i,j)=(mju1-mju2)*2*Pf*besselj(1,Gij*Rc)/(Gij*Rc);
            lambda(i,j)=(lambda1-lambda2)*2*Pf*besselj(1,Gij*Rc)/(Gij*Rc);
        end;
    end;
end;
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%定义简约布里渊区的各高对称点
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
T=(2*pi/a)*[epssys 0];
M=(2*pi/a)*[1/2 1/2];
X=(2*pi/a)*[1/2 0];
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%对于简约布里渊区边界上的每个k,求解其特征频率
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
THETA_A=zeros(NG,NG); %待解的本征方程A矩阵
THETA_B=zeros(NG,NG); %待解的本征方程B矩阵
Nkpoints=10; %每个方向上取的点数
stepsize=0:1/(Nkpoints-1):1; %每个方向上步长
TX_eig=zeros(Nkpoints,NG); %沿TX方向的波的待解的特征频率矩阵
XM_eig=zeros(Nkpoints,NG); %沿XM方向的波的待解的特征频率矩阵
MT_eig=zeros(Nkpoints,NG); %沿MT方向的波的待解的特征频率矩阵
for n=1:Nkpoints
    fprintf(['\n k-point:',int2str(n),'of',int2str(Nkpoints),'.\n']);
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %对于TX(正方格子)方向上的每个k值,求解其特征频率
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    TX_step=stepsize(n)*(X-T)+T;
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %n 求本征矩阵的元素
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    for i=1:NG
        for j=1:NG
            kGi=TX_step+G(i,:);
            kGj=TX_step+G(j,:);
            THETA_A(i,j)=mju(i,j)*dot(kGi,kGj);
            THETA_B(i,j)=rho(i,j); 
        end;
    end;
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %求解TX(正方格子)方向上的k矩阵的特征频率
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    TX_eig(n,:)=sort(sqrt(eig(THETA_A,THETA_B))).';
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %对于XM(正方格子)方向上的每个k值,求解其特征频率
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    XM_step=stepsize(n)*(M-X)+X;
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %n 求本征矩阵的元素
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    for i=1:NG
        for j=1:NG
            kGi=XM_step+G(i,:);
            kGj=XM_step+G(j,:);
            THETA_A(i,j)=mju(i,j)*dot(kGi,kGj);
            THETA_B(i,j)=rho(i,j); 
        end;
    end;
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %求解XM(正方格子)方向上的k矩阵的特征频率
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    XM_eig(n,:)=sort(sqrt(eig(THETA_A,THETA_B))).';
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %对于MT(正方格子)方向上的每个k值,求解其特征频率
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    MT_step=stepsize(n)*(T-M)+M;
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %n 求本征矩阵的元素
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    for i=1:NG
        for j=1:NG
            kGi=MT_step+G(i,:);
            kGj=MT_step+G(j,:);
            THETA_A(i,j)=mju(i,j)*dot(kGi,kGj);      
            THETA_B(i,j)=rho(i,j); 
        end;
    end;
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %求解MT(正方格子)方向上的k矩阵的特征频率
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    MT_eig(n,:)=sort(sqrt(eig(THETA_A,THETA_B))).';  
end;
fprintf('\n Calculation Time:%d sec',toc);
save pbs2D
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%绘制声子晶体能带结构图
%首先将特定方向(正方格子:TX,XM,MT)离散化
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
kaxis=0;
TXaxis=kaxis:norm(T-X)/(Nkpoints-1):(kaxis+norm(T-X));
kaxis=kaxis+norm(T-X);
XMaxis=kaxis:norm(M-X)/(Nkpoints-1):(kaxis+norm(X-M));
kaxis=kaxis+norm(X-M);
MTaxis=kaxis:norm(T-M)/(Nkpoints-1):(kaxis+norm(T-M));
kaxis=kaxis+norm(T-M);
 
Ntraject=3; %所需绘制的特定方向的数目
EigFreq=zeros(Ntraject*Nkpoints,1);
figure(1)
hold on;
Nk=Nkpoints;
 
 
for k=1:NG 
    for i=1:Nkpoints 
        EigFreq(i+0*Nk)=TX_eig(i,k)/(2*pi); 
        EigFreq(i+1*Nk)=XM_eig(i,k)/(2*pi); 
        EigFreq(i+2*Nk)=MT_eig(i,k)/(2*pi); 
    end; 
    plot(TXaxis(1:Nk),EigFreq(1+0*Nk:1*Nk),'b',... 
         XMaxis(1:Nk),EigFreq(1+1*Nk:2*Nk),'b',... 
         MTaxis(1:Nk),EigFreq(1+2*Nk:3*Nk),'b'); 
end;
grid on;
hold off;
titlestr='传统平面波展开法计算得到的二维声子晶体能带结构图';
title(titlestr);
xlabel('波矢k');
ylabel('频率f/Hz');
 
axis([0 MTaxis(Nkpoints) 0 800]);
set(gca,'XTick',[TXaxis(1) TXaxis(Nkpoints) XMaxis(Nkpoints) MTaxis(Nkpoints)]);
xtixlabel=char('T','X','M','T');
set(gca,'XTickLabel',xtixlabel);
 

这篇关于基于matlab实现的平面波展开法二维声子晶体能带计算程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/304006

相关文章

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

springboot filter实现请求响应全链路拦截

《springbootfilter实现请求响应全链路拦截》这篇文章主要为大家详细介绍了SpringBoot如何结合Filter同时拦截请求和响应,从而实现​​日志采集自动化,感兴趣的小伙伴可以跟随小... 目录一、为什么你需要这个过滤器?​​​二、核心实现:一个Filter搞定双向数据流​​​​三、完整代码

SpringBoot利用@Validated注解优雅实现参数校验

《SpringBoot利用@Validated注解优雅实现参数校验》在开发Web应用时,用户输入的合法性校验是保障系统稳定性的基础,​SpringBoot的@Validated注解提供了一种更优雅的解... 目录​一、为什么需要参数校验二、Validated 的核心用法​1. 基础校验2. php分组校验3