pandas实战——对星巴克数据的分析

2023-10-29 23:10

本文主要是介绍pandas实战——对星巴克数据的分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、实验对象

实验对象为星巴克在全球的门店数据,我们可以使用pandas对其进行简单的分析,如分析每个国家星巴克的数量,根据门店数量对国家进行排序等。

二、数据分析

1、读取数据并获取数据行列数

首先读取数据:

import numpy as np
import pandas as pdstarbucks = pd.read_csv("D:\\directory.csv")
print "数据的列标签如下:"
print starbucks.columns
print "每列的数据类型:"
print starbucks.dtypes
print "文件行数:"
print len(starbucks.index)
print "文件列数:"
print starbucks.columns.size

输出:

数据的列标签如下:
Index([u'Brand', u'Store Number', u'Store Name', u'Ownership Type',u'Street Address', u'City', u'State/Province', u'Country', u'Postcode',u'Phone Number', u'Timezone', u'Longitude', u'Latitude'],dtype='object')
每列的数据类型:
Brand              object
Store Number       object
Store Name         object
Ownership Type     object
Street Address     object
City               object
State/Province     object
Country            object
Postcode           object
Phone Number       object
Timezone           object
Longitude         float64
Latitude          float64
dtype: object
文件行数:
25600
文件列数:
13

可以看到文件共有25600条数据,每条数据有13列。

2、查看数据
#查看文件的前五行数据
print starbucks.head()

输出:
1258764-20180804162031101-676636141.png
可以通过DataFrame.head(n)来获取数据帧的前n行数据,未指定n则返回前5行,同样的函数还有DataFrame.tail(n)。上图中有些数据为NaN,如果NaN对数据处理有影响的话可以使用DataFrame.fillna(value)将NaN替换成value࿰

这篇关于pandas实战——对星巴克数据的分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/303989

相关文章

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查