【自然语言处理】【长文本处理】RMT:能处理长度超过一百万token的Transformer

本文主要是介绍【自然语言处理】【长文本处理】RMT:能处理长度超过一百万token的Transformer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关博客
【自然语言处理】【长文本处理】RMT:能处理长度超过一百万token的Transformer
【自然语言处理】【大模型】MPT模型结构源码解析(单机版)
【自然语言处理】【大模型】ChatGLM-6B模型结构代码解析(单机版)
【自然语言处理】【大模型】BLOOM模型结构源码解析(单机版)
【自然语言处理】【大模型】极低资源微调大模型方法LoRA以及BLOOM-LORA实现代码
【深度学习】【分布式训练】Collective通信操作及Pytorch示例
【自然语言处理】【大模型】Chinchilla:训练计算利用率最优的大语言模型
【自然语言处理】【大模型】大语言模型BLOOM推理工具测试
【自然语言处理】【大模型】GLM-130B:一个开源双语预训练语言模型
【自然语言处理】【大模型】用于大型Transformer的8-bit矩阵乘法介绍
【自然语言处理】【大模型】BLOOM:一个176B参数且可开放获取的多语言模型
【自然语言处理】【ChatGPT系列】FLAN:微调语言模型是Zero-Shot学习器
【自然语言处理】【ChatGPT系列】ChatGPT的智能来自哪里?

RMT:能处理超过一百万token的Transformer

​ 近日,RMT的作者放出的评测报告中声称其可以将Transformer能够处理的最大长度放宽到超过100万个tokens。让我们来看看RMT的原理及其实验细节。

一、RMT

论文地址:https://arxiv.org/pdf/2207.06881.pdf

1. 背景

​ 自注意力机制为Transformer的核心组件之一,赋予模型针对单个token聚合上下文tokens的能力。因此,每个token在编码结束后,都能够获得丰富的上下文表示。但是,这种方式会造成全局信息和局部信息都被存储在单个表示中。全局特征被分别存储在所有的token表示上,导致全局特征“模糊”且难以访问。此外,自注意力机制的计算复杂度是输入长度的平方,这也造成模型难以应用在长文本输入上。

​ RMT(Recurrent Memory Transformer)是一种片段级、记忆增强的Transformer,用于解决Transformer在长文本上的问题。RMT使用一种附加在输入序列上的特定记忆token
来实现记忆机制。这些"记忆token"为模型提供了额外的存储容量,便于模型处理那些没有直接表达至任何token的信息。

2. 方法

2.1 Transformer-XL

​ Transformer-XL基于片段级循环和相对位置编码,实现了一种state重用的缓存机制。对于每个transformer层 n n n,前一个片段 M n M^n Mn计算出的hidden state会被缓存。第 n n n层的输入的组成:(1) 前 m m m个缓存的内容;(2) 前一个Transformer层针对当前片段 τ \tau τ的输出;即
H ~ τ n − 1 = [ S G ( M − m : n − 1 ) ∘ H τ n − 1 ] \tilde{H}_{\tau}^{n-1}=[SG(M_{-m:}^{n-1})\circ H_{\tau}^{n-1}] \\ H~τn1=[SG(Mm:n1)Hτn1]
这里, M − m : n − 1 M_{-m:}^{n-1} Mm:n1是第 n − 1 n-1 n1层的前 m m m个缓存内容, S G SG SG表示不需要梯度, ∘ \circ 表示拼接, H τ n − 1 H_{\tau}^{n-1} Hτn1表示模型第 n − 1 n-1 n1层的输出。

H ~ τ n − 1 \tilde{H}_{\tau}^{n-1} H~τn1是片段 τ \tau τ针对模型第 n n n层(TL)的输入,产生输出的过程为
Q τ n = W q n H τ n − 1 K τ n = W k n H ~ τ n − 1 V τ n = W v n H ~ τ n − 1 H τ n = T L ( Q τ n , K τ n , V τ n ) \begin{align} Q_\tau^n&=W_q^n H_{\tau}^{n-1} \\ K_\tau^n&=W_k^n \tilde{H}_{\tau}^{n-1} \\ V_\tau^n&=W_v^n\tilde{H}_{\tau}^{n-1} \\ H_\tau^n&=TL(Q_\tau^n,K_\tau^n,V_\tau^n) \end{align} \\ QτnKτnVτnHτn=WqnHτn1=WknH~τn1=WvnH~τn1=TL(Qτn,Kτn,Vτn)
其中, W q n , W k n , W v n W_q^n,W_k^n,W_v^n Wqn,Wkn,Wvn是注意力的投影矩阵。注意, K τ n K_{\tau}^n Kτn V τ n V_{\tau}^n Vτn在计算时使用的是包含了缓存内容的 H ~ τ n − 1 \tilde{H}_{\tau}^{n-1} H~τn1,而 Q τ n Q_\tau^n Qτn则使用了 H τ n − 1 H_\tau^{n-1} Hτn1。在Transformer-XL的自注意力层中使用了相似位置编码。

2.2 RMT

在这里插入图片描述

​ 像GMAT、ETC、Memory Transformer等记忆增强的Transformer模型,通常会使用特殊的全局tokens来存储表示。通常,"记忆token"s会被添加至输入序列的开头位置。然而,decoder-only架构的causal attention mask使得在序列开始处的"记忆token"s无法收集到后续tokens的信息。若把"记忆token"放置在序列的末尾,前面的token就无法访问这些表示。为了解决这个问题,在序列样本处理时添加了一个循环。"记忆token"的表示放置在当前片段的末尾,然后作为下一个片段开始和末尾的记忆表示初始化

​ RMT的输入是在标准方式基础上,添加了特殊tokens [ mem ] [\text{mem}] [mem]。每个"记忆token"都是一个实值向量。 m m m个"记忆token"分别被拼接至当前片段表示 H r 0 \text{H}_r^0 Hr0的开始和末尾:
H ~ τ 0 = [ H τ m e m ∘ H τ 0 ∘ H τ m e m ] H ˉ τ N = Transformer ( H ~ τ 0 ) [ H τ r e a d ∘ H τ N ∘ H τ w r i t e ] : = H ˉ τ N \begin{align} &\tilde{H}_{\tau}^0=[H_{\tau}^{mem}\circ H_{\tau}^0\circ H_{\tau}^{mem}] \\ &\bar{H}_\tau^N=\text{Transformer}(\tilde{H}_{\tau}^0) \\ &[H_\tau^{read}\circ H_\tau^{N}\circ H_{\tau}^{write}]:=\bar{H}_\tau^N \end{align} \\ H~τ0=[HτmemHτ0Hτmem]HˉτN=Transformer(H~τ0)[HτreadHτNHτwrite]:=HˉτN
其中, N N N的模型的层数。总的来说,就是前一片段的"记忆token"拼接当前片段,然后进行前向传播。传播的结果中包含了当前层的表现以及"记忆token"的表示

​ 序列开始处的一组"记忆token"被称为"读记忆",其允许后续的tokens能够读取前一个片段的信息。末尾处的一组"记忆token"则称为"写记忆",其能够更新“记忆”的表示。因此, H τ w r i t e H_{\tau}^{write} Hτwrite包含了片段 τ \tau τ的更新后"记忆token"s。

​ 输入序列中的片段会被顺序处理。为了使片段间能够循环链接,将当前片段输出的"记忆token"传递给下一个片段的输入:
H τ + 1 m e m : = H τ w r i t e H ~ τ + 1 0 = [ H τ + 1 m e m ∘ H τ + 1 0 ∘ H τ + 1 m e m ] \begin{align} & H_{\tau+1}^{mem}:= H_{\tau}^{write} \\ & \tilde{H}_{\tau+1}^0 = [H_{\tau+1}^{mem}\circ H_{\tau+1}^0\circ H_{\tau+1}^{mem}] \end{align} \\ Hτ+1mem:=HτwriteH~τ+10=[Hτ+1memHτ+10Hτ+1mem]
RMT是基于全局"记忆token"实现的,其能够保证骨干Transformer不变的情况下,增强任意Transformer类模型的能力。“记忆token”仅在模型的输入和输出上进行操作。

2.3 两者的区别

(1) RMT为每个片段存储 m m m个记忆向量,而Transformer-XL则为每个片段存储 m × N m\times N m×N向量。

(2) RMT会将前一个片段的记忆表示与当前片段的tokens一起送入Transformer层进行处理。

(3) "读/写记忆"块能够访问当前块的所有tokens,causal attention mask仅应用在输入序列上。

(4) 不同于Transformer-XL,RMT反向传播时不会去掉"记忆"部分的梯度。(本文实验的片段间梯度传播范围从0到4)

3. 原论文实验

在这里插入图片描述

​ 上图是RMT在三个需要长文本处理能力的任务Copy、Reverse和Associative retrieval上的实验结果。图的横坐标是切分的片段数,纵坐标是准确率。可以看到,RMT的效果都更好。

在这里插入图片描述

​ 上表是语言建模任务的困惑度指标。显然,Transformer-XL和RMT的效果要好于baseline模型和Memory Transformer。

二、扩展至100万tokens

论文地址:https://arxiv.org/pdf/2304.11062.pdf

1. RMT Encoder版

在这里插入图片描述

​ 输入样本被分割为 m m m个片段,"记忆token"被添加到片段的开始,并与片段的其余tokens一起处理。对于BERT这样的encoder-only结构,"记忆token"仅被添加到片段的开始,而不像decoder-only那样分别添加read和write。对于时间步 τ \tau τ和片段 H τ 0 H_{\tau}^0 Hτ0,执行步骤为:
H ~ τ 0 = [ H τ m e m ∘ H τ 0 ] H ˉ τ N = Transformer ( H ~ τ 0 ) [ H ˉ τ m e m ∘ H τ N ] : = H ˉ τ N \begin{align} &\tilde{H}_{\tau}^0=[H_{\tau}^{mem}\circ H_{\tau}^0] \\ &\bar{H}_{\tau}^N=\text{Transformer}(\tilde{H}_{\tau}^0) \\ &[\bar{H}_{\tau}^{mem}\circ H_{\tau}^N]:=\bar{H}_{\tau}^N \end{align} H~τ0=[HτmemHτ0]HˉτN=Transformer(H~τ0)[HˉτmemHτN]:=HˉτN
其中, N N N是Transformer的层数。

​ 在前向传播后, H ˉ τ m e m \bar{H}_{\tau}^{mem} Hˉτmem片段 τ \tau τ的记忆token。输入序列的片段会按顺序逐个被处理。为了确保能够实现递归的连接,将当前片段的"记忆token"传递为下一个片段的输入:
H τ + 1 m e m : = H ˉ τ m e m H ~ τ + 1 0 = [ H τ + 1 m e m ∘ H τ + 1 0 ] \begin{align} & H_{\tau+1}^{mem}:=\bar{H}_{\tau}^{mem} \\ & \tilde{H}_{\tau+1}^0=[H_{\tau+1}^{mem}\circ H_{\tau+1}^0] \end{align} \\ Hτ+1mem:=HˉτmemH~τ+10=[Hτ+1memHτ+10]

2. 记忆任务

在这里插入图片描述

​ 为了测试记忆能力,构建了需要记忆简单事实和基本推理的合成数据集。任务的输入是若干个事实和一个需要通过这些事实才能回答的问题。任务的形式为6分类,每个类别表示一个独立的答案选项。

  • 事实记忆

    该任务是测试RMT长时间存储信息的能力。在最简单的例子中,事实总是位于输入的开始,而问题在输入的末尾。问题和答案之间插入不相关的文本,完整的输入无法放入单个模型中。

  • 事实检测和记忆

    该任务增加了难度,将事实移动到随机的位置。需要模型从不相关文本中区分出事实,写入到记忆中,随后用来回答问题。

  • 用记忆的事实进行推理

    两个事实被添加至输入的随机位置上,问题放置在输入的末尾,该问题需要所有的事实才能回答。

3. 实验

​ 实验使用bert-base-cased作为backbone。所有模型都是用尺寸为10的memory来增强,并使用AdamW优化器进行优化。

3.1 课程学习

​ 使用训练schedule能够极大的改善准确率和稳定性。初始,RMT在较短的任务上进行训练,在训练收敛之后,再继续增加长度。

3.2 外推能力

在这里插入图片描述

​ 为了评估RMT泛化到不同序列长度的能力,评估了在不同长度上训练的模型,结果如上图。模型在较短的任务上效果更好。唯一的例外是单片段推理任务,模型一旦在更长序列上训练,那么效果就会变差。

​ 随着训练片段数量的增加,RMT也能够泛化到更长的序列上。在5个或者更长的片段上进行训练后,RMT几乎可以完美的泛化到两倍的长度。
在这里插入图片描述

​ 为了能够测试泛化的极限,将验证任务的尺寸从4096增加至2043904,RMT在如此长的序列上也能够有很好的效果。

三、总结

  • 总的来说,RMT的思路简单。相比Transformer-XL来说,片段间传递的参数会少很多。
  • RMT采用递归的方式传递信息,那么训练时梯度也需要回传,这导致训练时不太能并行。
  • 原始论文中采用decoder-only架构,但是在扩展至百万tokens的实验中采用了encoder-only架构,是decoder-only的效果不够好吗?
  • 评测的任务总体比较简单,迁移至当前的LLM上效果怎么样还比较难以确定。

这篇关于【自然语言处理】【长文本处理】RMT:能处理长度超过一百万token的Transformer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/303147

相关文章

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

mysql外键创建不成功/失效如何处理

《mysql外键创建不成功/失效如何处理》文章介绍了在MySQL5.5.40版本中,创建带有外键约束的`stu`和`grade`表时遇到的问题,发现`grade`表的`id`字段没有随着`studen... 当前mysql版本:SELECT VERSION();结果为:5.5.40。在复习mysql外键约

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

Java后端接口中提取请求头中的Cookie和Token的方法

《Java后端接口中提取请求头中的Cookie和Token的方法》在现代Web开发中,HTTP请求头(Header)是客户端与服务器之间传递信息的重要方式之一,本文将详细介绍如何在Java后端(以Sp... 目录引言1. 背景1.1 什么是 HTTP 请求头?1.2 为什么需要提取请求头?2. 使用 Spr

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req

使用Python处理CSV和Excel文件的操作方法

《使用Python处理CSV和Excel文件的操作方法》在数据分析、自动化和日常开发中,CSV和Excel文件是非常常见的数据存储格式,ython提供了强大的工具来读取、编辑和保存这两种文件,满足从基... 目录1. CSV 文件概述和处理方法1.1 CSV 文件格式的基本介绍1.2 使用 python 内

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

SpringBoot项目引入token设置方式

《SpringBoot项目引入token设置方式》本文详细介绍了JWT(JSONWebToken)的基本概念、结构、应用场景以及工作原理,通过动手实践,展示了如何在SpringBoot项目中实现JWT... 目录一. 先了解熟悉JWT(jsON Web Token)1. JSON Web Token是什么鬼