python数据分析——认识GBR梯度提升回归模型

2023-10-29 11:30

本文主要是介绍python数据分析——认识GBR梯度提升回归模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GBR——Gradient boosting regression——梯度提升回归模型

目 录

1 Boosting

   集成学习,Boosting与Bagging的区别

2 Gradient Boosting算法

   算法思想,算法实现,残差与负梯度

 3 终极组合GBR


Boosting

Boosting是一种机器学习算法,常见的机器学习算法有:

决策树算法、朴素贝叶斯算法、支持向量机算法、随机森林算法、人工神经网络算法

Boosting与Bagging算法(回归算法)、关联规则算法、EM(期望最大化)算法、深度学习

1.1 集成学习

背景

我们希望训练得到的模型是一个各方面都稳定表现良好的模型,但是实际情况中得到的在某方面偏好的模型。集成学习则可以通过多个学习器相结合,来获得比单一学习器更优越的泛化性能。

原理

一般集成学习会通过重采样获得一定数量的样本,然后训练多个弱学习器,采用投票法,即少数服从多数原则来选择分类结果,当少数学习器出现错误时,也可以通过多数学习器来纠正结果。

分类

1)个体学习器之间存在较强的依赖性,必须串行生成学习器:boosting类算法;

2) 个体学习器之间不存在强依赖关系,可以并行生成学习器:Bagging类算法

1.2 Boosting与Bagging区别

Boosting

种通用的增强基础算法性能的回归分析算法。它可以将弱学习算法提高为强学习算法,可以应用到其它基础回归算法,如线性回归、神经网络等,来提高精度。

Boosting由于各基学习器之间存在强依赖关系,因此只能串行处理,也就是说Boosting实际上是个迭代学习的过程。

Boosting的工作机制为:

1) 先从初始训练集中训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器处理不当的样本在后续的训练过程中受到更多关注;
2) 然后基于调整后的样本分布来训练下一个基学习器;  
3) 如此重复,直到基学习器数目达到事先自定的值 T ,然后将这 T 个基学习器进行加权结合。

 Bagging

首先从数据集中采样出T个数据集,然后基于这T个数据集,每个训练出一个基分类器,再将这些基分类器进行组合做出预测。Bagging在做预测时,对于分类任务,使用简单的投票法。对于回归任务使用简单平均法。若分类预测时出现两个类票数一样时,则随机选择一个。Bagging非常适合并行处理。

2 Gradient Boosting算法

任何监督学习算法的目标是定义一个损失函数并将其最小化。

Gradient Boosting 的基本思想是:串行地生成多个弱学习器,每个弱学习器的目标是拟合先前累加模型的损失函数的负梯度,使加上该弱学习器后的累积模型损失往负梯度的方向减少。

举个简单的例子

假设有个样本真实值为 10,第一个弱学习器拟合结果为7,则残差为10-7=3

使残差 3 作为下一个学习器的拟合目标,第二个弱学习其拟合结果为2

则这两个弱学习器组合而成的 Boosting 模型对于样本的预测为7+2=9

以此类推可以继续增加弱学习器以提高性能。

和其他boost方法一样,梯度提升方法也是通过迭代的方法联合弱”学习者”联合形成一个强学习者。

2.1 算法思想

2.2 算法实现

1)初始化模型函数

2)For m = 1 to M:

使用损失函数的负梯度在当前模型 Fm-1(x)上的值近似代替残差:

使用基学习器 h(x)拟合近似的残差值:

计算最优的ɤ:

3)更新模型 :

4)返回Fm(x)

2.3 残差与负梯度

 

 3 终极组合GBR

GBR就是弱学习器是回归算法。

常见的回归算法:

线性回归(Linear Regression

逻辑回归(Logistic Regression

多项式回归(Polynomial Regression

逐步回归(Stepwise Regression

岭回归(Ridge Regression

套索回归(Lasso Regression

弹性回归(ElasticNet Regression

其他GB算法:

GBRT (Gradient BoostRegression Tree)

梯度提升回归树

GBDT (Gradient BoostDecision Tree)

梯度提升决策树

这篇关于python数据分析——认识GBR梯度提升回归模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/300328

相关文章

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应